Suppr超能文献

活性位点瓣在链霉亲和素/生物素复合物形成中的作用。

The Role of the Active Site Flap in Streptavidin/Biotin Complex Formation.

机构信息

Department of Chemistry and Department of Biochemistry and Molecular Biology , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States.

Institute for Cyber Enabled Research , Michigan State University , 567 Wilson Road , East Lansing , Michigan 48824 , United States.

出版信息

J Am Chem Soc. 2018 Apr 25;140(16):5434-5446. doi: 10.1021/jacs.8b00743. Epub 2018 Apr 12.

Abstract

Obtaining a detailed description of how active site flap motion affects substrate or ligand binding will advance structure-based drug design (SBDD) efforts on systems including the kinases, HSP90, HIV protease, ureases, etc. Through this understanding, we will be able to design better inhibitors and better proteins that have desired functions. Herein we address this issue by generating the relevant configurational states of a protein flap on the molecular energy landscape using an approach we call MT and then following this with a procedure to estimate the free energy associated with the motion of the flap region. To illustrate our overall workflow, we explored the free energy changes in the streptavidin/biotin system upon introducing conformational flexibility in loop in the biotin unbound ( apo) and bound ( holo) state. The free energy surfaces were created using the Movable Type free energy method, and for further validation, we compared them to potential of mean force (PMF) generated free energy surfaces using MD simulations employing the FF99SBILDN and FF14SB force fields. We also estimated the free energy thermodynamic cycle using an ensemble of closed-like and open-like end states for the ligand unbound and bound states and estimated the binding free energy to be approximately -16.2 kcal/mol (experimental -18.3 kcal/mol). The good agreement between MT in combination with the MT method with experiment and MD simulations supports the effectiveness of our strategy in obtaining unique insights into the motions in proteins that can then be used in a range of biological and biomedical applications.

摘要

获得关于活性位点瓣运动如何影响底物或配体结合的详细描述,将推进基于结构的药物设计(SBDD)工作,包括激酶、HSP90、HIV 蛋白酶、脲酶等系统。通过这种理解,我们将能够设计出更好的抑制剂和具有所需功能的更好的蛋白质。在这里,我们通过使用我们称之为 MT 的方法在分子能量景观上生成蛋白质瓣的相关构象状态,然后使用一种估计瓣区域运动相关自由能的程序来解决这个问题。为了说明我们的整体工作流程,我们探索了在生物素未结合(apo)和结合(holo)状态下引入环构象灵活性时,链霉亲和素/生物素系统中的自由能变化。自由能表面是使用可移动类型自由能方法创建的,为了进一步验证,我们将它们与使用 FF99SBILDN 和 FF14SB 力场进行 MD 模拟生成的平均力势能(PMF)生成的自由能表面进行了比较。我们还使用配体未结合和结合状态的封闭样和开放样末端状态的集合估计了自由能热力学循环,并估计结合自由能约为-16.2 kcal/mol(实验值为-18.3 kcal/mol)。MT 与 MT 方法与实验和 MD 模拟的良好一致性支持了我们的策略在获得蛋白质运动独特见解方面的有效性,然后可以将这些见解用于一系列生物和生物医学应用中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验