Suppr超能文献

将基因网络纳入荷斯坦、瑞士褐牛和泽西牛的产犊难易度预测中。

Including gene networks to predict calving difficulty in Holstein, Brown Swiss and Jersey cattle.

机构信息

Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.

Animal Genomics and Improvement Laboratory, ARS, USDA, Beltsville, MD, 27705, USA.

出版信息

BMC Genet. 2018 Apr 2;19(1):20. doi: 10.1186/s12863-018-0606-y.

Abstract

BACKGROUND

Calving difficulty or dystocia has a great economic impact in the US dairy industry. Reported risk factors associated with calving difficulty are feto-pelvic disproportion, gestation length and conformation. Different dairy cattle breeds have different incidence of calving difficulty, with Holstein having the highest dystocia rates and Jersey the lowest. Genomic selection becomes important especially for complex traits with low heritability, where the accuracy of conventional selection is lower. However, for complex traits where a large number of genes influence the phenotype, genome-wide association studies showed limitations. Biological networks could overcome some of these limitations and better capture the genetic architecture of complex traits. In this paper, we characterize Holstein, Brown Swiss and Jersey breed-specific dystocia networks and employ them in genomic predictions.

RESULTS

Marker association analysis identified single nucleotide polymorphisms explaining the largest average proportion of genetic variance on BTA18 in Holstein, BTA25 in Brown Swiss, and BTA15 in Jersey. Gene networks derived from the genome-wide association included 1272 genes in Holstein, 1454 genes in Brown Swiss, and 1455 genes in Jersey. Furthermore, 256 genes in Holstein network, 275 genes in the Brown Swiss network, and 253 genes in the Jersey network were within previously reported dystocia quantitative trait loci. The across-breed network included 80 genes, with 9 genes being within previously reported dystocia quantitative trait loci. The gene-gene interactions in this network differed in the different breeds. Gene ontology enrichment analysis of genes in the networks showed Regulation of ARF GTPase was very significant (FDR ≤ 0.0098) on Holstein. Neuron morphogenesis and differentiation was the term most enriched (FDR ≤ 0.0539) on the across-breed network. Genomic prediction models enriched with network-derived relationship matrices did not outperform regular GBLUP models.

CONCLUSIONS

Regions identified in the genome were in the proximity of previously described quantitative trait loci that would most likely affect calving difficulty by altering the feto-pelvic proportion. Inclusion of identified networks did not increase prediction accuracy. The approach used in this paper could be extended to any instance with asymmetric distribution of phenotypes, for example, resistance to disease data.

摘要

背景

在美国奶牛养殖业中,分娩困难或难产对经济有很大的影响。与难产相关的报道风险因素包括胎儿-骨盆比例不当、妊娠期长短和体型。不同奶牛品种的难产发生率不同,荷斯坦牛的难产率最高,泽西牛的难产率最低。基因组选择变得非常重要,特别是对于遗传力低的复杂性状,常规选择的准确性较低。然而,对于受大量基因影响表型的复杂性状,全基因组关联研究显示出了局限性。生物网络可以克服其中的一些局限性,并更好地捕捉复杂性状的遗传结构。在本文中,我们描述了荷斯坦牛、瑞士褐牛和泽西牛品种特异性难产网络,并将其应用于基因组预测。

结果

标记关联分析确定了在荷斯坦牛的 BTA18、瑞士褐牛的 BTA25 和泽西牛的 BTA15 上解释最大平均遗传方差的单核苷酸多态性。从全基因组关联中得出的基因网络包括荷斯坦牛的 1272 个基因、瑞士褐牛的 1454 个基因和泽西牛的 1455 个基因。此外,荷斯坦牛网络中的 256 个基因、瑞士褐牛网络中的 275 个基因和泽西牛网络中的 253 个基因位于之前报道的难产数量性状基因座内。跨品种网络包括 80 个基因,其中 9 个基因位于之前报道的难产数量性状基因座内。该网络中的基因-基因相互作用在不同品种中有所不同。网络中基因的基因本体论富集分析显示,在荷斯坦牛中,ARF GTPase 的调节作用非常显著(FDR≤0.0098)。跨品种网络中最丰富的术语是神经元形态发生和分化(FDR≤0.0539)。利用网络衍生的关系矩阵丰富的基因组预测模型并没有优于常规 GBLUP 模型。

结论

在基因组中确定的区域位于之前描述的数量性状基因座附近,这些基因座很可能通过改变胎儿-骨盆比例来影响分娩困难。包含已识别的网络并没有提高预测准确性。本文中使用的方法可以扩展到任何具有表型不对称分布的实例,例如疾病抗性数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f8/5880070/9acf00c42b9b/12863_2018_606_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验