Future Industries Institute, University of South Australia, SA, Australia; Division of ITEE, University of South Australia, SA, Australia.
Future Industries Institute, University of South Australia, SA, Australia.
Phys Med. 2018 Mar;47:121-128. doi: 10.1016/j.ejmp.2018.03.004. Epub 2018 Mar 14.
The use of gold nanoparticle (GNP) and other metal nanoparticle (MNP) radiosensitisers to enhance radiotherapy offers the potential of improved treatment outcomes. Originally intended for use with X-ray therapy, the possibility of enhanced hadron therapy is desirable due to the superior sparing of healthy tissue in hadron therapy compared to conventional X-ray therapy. While MNPs were not expected to be effective radiosensitisers for hadron therapy due to the limited Z dependence of interactions, recent experimental measurements have contradicted this expectation. Key experimental measurements and Monte Carlo simulations of MNP radiosensitisation for hadron irradiation are reviewed in the current work. Numerous experimental measurements have found a large radiosensitisation effect due to MNPs for proton and carbon ion irradiation. Experiments have also indicated that the radiosensitisation is due in large part to enhanced reactive oxygen species (ROS) production. Simulations have found a large radial dose and ROS enhancement on the nanoscale around a single MNP. However, the short range of the dose enhancement is insufficient for a large macroscale dose enhancement or enhanced biological effect in a cell model considering dose to the nucleus from GNPs in the cytoplasm (a distribution observed in most experiments).
使用金纳米颗粒(GNP)和其他金属纳米颗粒(MNP)增敏剂来增强放射治疗,具有改善治疗效果的潜力。最初用于 X 射线治疗,由于与传统 X 射线治疗相比,强子治疗对健康组织的保护更好,因此增强强子治疗的可能性是可取的。虽然由于相互作用的 Z 依赖性有限,预计 MNPs 不会成为强子治疗的有效增敏剂,但最近的实验测量结果却与这一预期相矛盾。当前的工作中综述了用于强子辐照的 MNP 增敏作用的关键实验测量和蒙特卡罗模拟。大量实验测量发现,质子和碳离子辐照会因 MNPs 而产生很大的放射增敏效应。实验还表明,放射增敏在很大程度上是由于活性氧物种(ROS)的产生增强所致。模拟发现,在单个 MNP 周围的纳米尺度上,存在很大的径向剂量和 ROS 增强。然而,考虑到细胞质中的 GNP 对核的剂量(大多数实验中观察到的分布),增强的剂量增强在短程范围内不足以实现大的宏观剂量增强或增强的细胞模型中的生物学效应。