Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, MA, United States of America. Department of Physics, Boston University, Boston, Massachusetts, MA, United States of America. Department of Ionizing Radiation, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany. Author to whom any correspondence should be addressed.
Phys Med Biol. 2019 Aug 28;64(17):175005. doi: 10.1088/1361-6560/ab314c.
Gold nanoparticle (GNP) radio-enhancement is a promising technique to increase the dose deposition in a tumor while sparing neighboring healthy tissue. Previous experimental studies showed effects on cell survival and tumor control for keV x-rays but surprisingly also for MV-photons, proton and carbon-ion beams. In a systematic study, we use the Monte Carlo simulation tool TOPAS-nBio to model the GNP radio-enhancement within a cell as a function of GNP concentration, size and clustering for a wide range of energies for photons, protons and, for the first time, carbon-ions. Moreover, we include water radiolysis, which has been recognized as a major pathway of GNP mediated radio-enhancement. At a GNP concentration of 0.5% and a GNP diameter of 10 nm, the dose enhancement ratio was highest for 50 keV x-rays (1.36) and decreased in the orthovoltage (1.04 at 250 keV) and megavoltage range (1.01 at 1 MeV). The dose enhancement linearly increased with GNP concentration and decreased with GNP size and degree of clustering for all radiation modalities. While the highest physical dose enhancement at 5% concentrations was only 1.003 for 10 MeV protons and 1.004 for 100 MeV carbon-ions, we find the number of hydroxyl ([Formula: see text]) altered by 23% and 3% after 1 [Formula: see text]s at low, clinically-relevant concentrations. For the same concentration and proton-impact, the G-value is most sensitive to the nanoparticle size with 46 times more radical interactions at GNPs for 2 nm than for 50 nm GNP diameter within 1 [Formula: see text]s. Nanoparticle clustering was found to decrease the number of interactions at GNPs, e.g. for a cluster of 25 GNPs by a factor of 3.4. The changes in G-value correlate to the average distance between the chemical species and the GNPs. While the radiochemistry of GNP-loaded water has yet to be fully understood, this work offers a first relative quantification of radiolysis products for a broad parameter-set.
金纳米颗粒(GNP)的放射增敏作用是一种很有前途的技术,可以增加肿瘤内的剂量沉积,同时保护邻近的健康组织。以前的实验研究表明,keV X 射线对细胞存活和肿瘤控制有影响,但令人惊讶的是,兆伏光子、质子和碳离子束也有影响。在一项系统研究中,我们使用蒙特卡罗模拟工具 TOPAS-nBio 来模拟细胞内 GNP 放射增敏作用,研究范围包括光子、质子和碳离子的各种能量,这是首次对碳离子进行模拟。此外,我们还包括水辐射分解,这已被认为是 GNP 介导的放射增敏的主要途径。在 GNP 浓度为 0.5%和 GNP 直径为 10nm 的情况下,50keV X 射线的剂量增强比最高(1.36),随着射线能量的增加(在 250keV 时为 1.04,在 1MeV 时为 1.01)而降低。对于所有辐射方式,剂量增强比与 GNP 浓度呈线性关系,与 GNP 尺寸和团聚程度呈反比。虽然在 5%浓度下,最高的物理剂量增强仅为 10MeV 质子的 1.003 和 100MeV 碳离子的 1.004,但我们发现,在低浓度下,23%和 3%的羟基([Formula: see text])被改变,低浓度下的临床相关浓度仅为 1[Formula: see text]s。对于相同的浓度和质子撞击,G 值对纳米颗粒尺寸最敏感,在 1[Formula: see text]s 内,2nm GNP 的自由基相互作用是 50nm GNP 的 46 倍。纳米颗粒团聚被发现会降低 GNP 中的相互作用数量,例如,对于 25 个 GNP 的团聚,相互作用数量减少了 3.4 倍。G 值的变化与化学物质与 GNP 之间的平均距离相关。虽然 GNP 负载水的放射化学性质尚未完全理解,但这项工作为广泛参数集的放射分解产物提供了首次相对定量。