IEEE Trans Med Imaging. 2018 Apr;37(4):941-954. doi: 10.1109/TMI.2017.2778230.
The simultaneous removal of noise and preservation of the integrity of 3-D magnetic resonance (MR) images is a difficult and important task. In this paper, we consider characterizing MR images with 3-D operators, and present a novel 4-D transform-domain method termed 'modified nonlocal tensor-SVD (MNL-tSVD)' for MR image denoising. The proposed method is based on the grouping, hard-thresholding and aggregation paradigms, and can be viewed as a generalized nonlocal extension of tensor-SVD (t-SVD). By keeping MR images in its natural three-dimensional form, and collaboratively filtering similar patches, MNL-tSVD utilizes both the self-similarity property and 3-D structure of MR images to preserve more actual details and minimize the introduction of new artifacts. We show the adaptability of MNL-tSVD by incorporating it into a two-stage denoising strategy with a few adjustments. In addition, analysis of the relationship between MNL-tSVD and current the state-of-the-art 4-D transforms is given. Experimental comparisons over simulated and real brain data sets at different Rician noise levels show that MNL-tSVD can produce competitive performance compared with related approaches.
同时去除噪声并保持三维磁共振(MR)图像的完整性是一项困难且重要的任务。在本文中,我们考虑用三维算子来描述 MR 图像,并提出了一种新颖的 4-D 变换域方法,称为“改进的非局部张量奇异值分解(MNL-tSVD)”,用于 MR 图像去噪。所提出的方法基于分组、硬阈值化和聚合范例,可以看作是张量奇异值分解(t-SVD)的广义非局部扩展。通过保持 MR 图像的自然三维形式,并协作地过滤相似的补丁,MNL-tSVD 利用 MR 图像的自相似性和 3-D 结构来保留更多实际细节,并最大限度地减少新伪影的引入。我们通过将其与少数调整后的两阶段去噪策略相结合,展示了 MNL-tSVD 的适应性。此外,还给出了 MNL-tSVD 与当前最先进的 4-D 变换之间关系的分析。在不同的瑞利噪声水平下,对模拟和真实脑数据集的实验比较表明,与相关方法相比,MNL-tSVD 可以产生有竞争力的性能。