Suppr超能文献

网络中的多尺度混合模式。

Multiscale mixing patterns in networks.

机构信息

Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium;

Namur Institute for Complex Systems (naXys), Université de Namur, Namur B-5000, Belgium.

出版信息

Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4057-4062. doi: 10.1073/pnas.1713019115. Epub 2018 Apr 2.

Abstract

Assortative mixing in networks is the tendency for nodes with the same attributes, or metadata, to link to each other. It is a property often found in social networks, manifesting as a higher tendency of links occurring between people of the same age, race, or political belief. Quantifying the level of assortativity or disassortativity (the preference of linking to nodes with different attributes) can shed light on the organization of complex networks. It is common practice to measure the level of assortativity according to the assortativity coefficient, or modularity in the case of categorical metadata. This global value is the average level of assortativity across the network and may not be a representative statistic when mixing patterns are heterogeneous. For example, a social network spanning the globe may exhibit local differences in mixing patterns as a consequence of differences in cultural norms. Here, we introduce an approach to localize this global measure so that we can describe the assortativity, across multiple scales, at the node level. Consequently, we are able to capture and qualitatively evaluate the distribution of mixing patterns in the network. We find that, for many real-world networks, the distribution of assortativity is skewed, overdispersed, and multimodal. Our method provides a clearer lens through which we can more closely examine mixing patterns in networks.

摘要

网络中的关联混合是指具有相同属性(或元数据)的节点相互连接的趋势。它是社交网络中常见的一种特性,表现为具有相同年龄、种族或政治信仰的人之间更容易产生联系。量化关联混合或非关联混合的程度(即链接到具有不同属性的节点的偏好)可以揭示复杂网络的组织方式。根据关联系数来衡量关联混合的程度是常见的做法,而对于分类元数据,则使用模块度来衡量。这个全局值是网络中关联混合的平均水平,但当混合模式存在异质性时,它可能不是一个有代表性的统计量。例如,跨越全球的社交网络可能由于文化规范的差异而表现出局部的混合模式差异。在这里,我们引入了一种本地化这个全局度量的方法,以便我们可以在节点级别描述多个尺度上的关联混合。因此,我们能够捕捉和定性评估网络中混合模式的分布。我们发现,对于许多真实世界的网络,关联混合的分布是偏态的、过度离散的和多峰的。我们的方法提供了一个更清晰的视角,通过它我们可以更仔细地研究网络中的混合模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d416/5910813/795902071ed3/pnas.1713019115fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验