Suppr超能文献

协作安全事件关联分析中的信息汇集偏差。

Information-Pooling Bias in Collaborative Security Incident Correlation Analysis.

机构信息

Arizona State University, Mesa.

出版信息

Hum Factors. 2018 Aug;60(5):626-639. doi: 10.1177/0018720818769249. Epub 2018 Apr 3.

Abstract

OBJECTIVE

Incident correlation is a vital step in the cybersecurity threat detection process. This article presents research on the effect of group-level information-pooling bias on collaborative incident correlation analysis in a synthetic task environment.

BACKGROUND

Past research has shown that uneven information distribution biases people to share information that is known to most team members and prevents them from sharing any unique information available with them. The effect of such biases on security team collaborations are largely unknown.

METHOD

Thirty 3-person teams performed two threat detection missions involving information sharing and correlating security incidents. Incidents were predistributed to each person in the team based on the hidden profile paradigm. Participant teams, randomly assigned to three experimental groups, used different collaboration aids during Mission 2.

RESULTS

Communication analysis revealed that participant teams were 3 times more likely to discuss security incidents commonly known to the majority. Unaided team collaboration was inefficient in finding associations between security incidents uniquely available to each member of the team. Visualizations that augment perceptual processing and recognition memory were found to mitigate the bias.

CONCLUSION

The data suggest that (a) security analyst teams, when conducting collaborative correlation analysis, could be inefficient in pooling unique information from their peers; (b) employing off-the-shelf collaboration tools in cybersecurity defense environments is inadequate; and (c) collaborative security visualization tools developed considering the human cognitive limitations of security analysts is necessary.

APPLICATION

Potential applications of this research include development of team training procedures and collaboration tool development for security analysts.

摘要

目的

事件关联是网络安全威胁检测过程中的重要步骤。本文研究了在合成任务环境中,群体信息汇聚偏差对协作事件关联分析的影响。

背景

过去的研究表明,信息分配不均会导致人们偏向于分享大多数团队成员已知的信息,而阻止他们分享自己拥有的任何独特信息。这种偏差对安全团队协作的影响在很大程度上是未知的。

方法

30 个 3 人团队执行了两个涉及信息共享和关联安全事件的威胁检测任务。根据隐藏模式范式,将事件预先分配给团队中的每个人。参与者团队随机分配到三个实验组,在任务 2 中使用不同的协作辅助工具。

结果

沟通分析表明,团队更有可能讨论大多数人都知道的安全事件。未经辅助的团队协作在发现团队成员各自拥有的安全事件之间的关联方面效率低下。发现增强感知处理和识别记忆的可视化效果可以减轻这种偏差。

结论

数据表明:(a) 安全分析师团队在进行协作关联分析时,可能无法有效地从同行那里汇集独特的信息;(b) 在网络安全防御环境中使用现成的协作工具是不够的;(c) 考虑到安全分析师的人类认知限制,开发协作安全可视化工具是必要的。

应用

这项研究的潜在应用包括开发团队培训程序和安全分析师的协作工具开发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验