Business School, Sichuan University, Chengdu 610064, China.
Department of Computer Science and Artificial Intelligence, University of Granada, E-18071 Granada, Spain.
Int J Environ Res Public Health. 2018 Apr 3;15(4):664. doi: 10.3390/ijerph15040664.
Hesitant fuzzy linguistic term set provides an effective tool to represent uncertain decision information. However, the semantics corresponding to the linguistic terms in it cannot accurately reflect the decision-makers' subjective cognition. In general, different decision-makers' sensitivities towards the semantics are different. Such sensitivities can be represented by the cumulative prospect theory value function. Inspired by this, we propose a linguistic scale function to transform the semantics corresponding to linguistic terms into the linguistic preference values. Furthermore, we propose the hesitant fuzzy linguistic preference utility set, based on which, the decision-makers can flexibly express their distinct semantics and obtain the decision results that are consistent with their cognition. For calculations and comparisons over the hesitant fuzzy linguistic preference utility sets, we introduce some distance measures and comparison laws. Afterwards, to apply the hesitant fuzzy linguistic preference utility sets in emergency management, we develop a method to obtain objective weights of attributes and then propose a hesitant fuzzy linguistic preference utility-TOPSIS method to select the best fire rescue plan. Finally, the validity of the proposed method is verified by some comparisons of the method with other two representative methods including the hesitant fuzzy linguistic-TOPSIS method and the hesitant fuzzy linguistic-VIKOR method.
犹豫模糊语言术语集为表示不确定决策信息提供了有效的工具。然而,其中语言术语所对应的语义并不能准确地反映决策者的主观认知。一般来说,不同决策者对语义的敏感程度是不同的。这种敏感性可以用累积前景理论价值函数来表示。受此启发,我们提出了一种语言标度函数,将语言术语所对应的语义转换为语言偏好值。此外,我们提出了犹豫模糊语言偏好效用集,在此基础上,决策者可以灵活地表达他们不同的语义,并获得符合他们认知的决策结果。对于犹豫模糊语言偏好效用集的计算和比较,我们引入了一些距离度量和比较法则。之后,为了将犹豫模糊语言偏好效用集应用于应急管理中,我们提出了一种获取属性客观权重的方法,然后提出了一种犹豫模糊语言偏好效用-TOPSIS 方法来选择最佳的火灾救援计划。最后,通过与其他两种具有代表性的方法(犹豫模糊语言-TOPSIS 方法和犹豫模糊语言-VIKOR 方法)的一些比较,验证了所提出方法的有效性。