Suppr超能文献

朝向高精度第一过渡金属配合物的自旋态能量学:一种组合的 CASPT2/CC 方法。

Toward Highly Accurate Spin State Energetics in First-Row Transition Metal Complexes: A Combined CASPT2/CC Approach.

机构信息

Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium.

出版信息

J Chem Theory Comput. 2018 May 8;14(5):2446-2455. doi: 10.1021/acs.jctc.8b00057. Epub 2018 Apr 11.

Abstract

In previous work on the performance of multiconfigurational second-order perturbation theory (CASPT2) in describing spin state energetics in first-row transition metal systems [ Pierloot et al. J. Chem. Theory Comput. 2017 , 13 , 537 - 553 ], we showed that standard CASPT2 works well for valence correlation but does not describe the metal semicore (3s3p) correlation effects accurately. This failure is partially responsible for the well-known bias toward high-spin states of CASPT2. In this paper, we expand our previous work and show that this bias could be partly removed with a combined CASPT2/CC approach: using high-quality CASPT2 with extensive correlation-consistent basis sets for valence correlation and low-cost CCSD(T) calculations with minimal basis sets for the metal semicore (3s3p) correlation effects. We demonstrate that this approach is efficient by studying the spin state energetics of a series of iron complexes modeling important intermediates in oxidative catalytic processes in chemistry and biochemistry. On the basis of a comparison with bare CCSD(T) results from this and previous work, the average error of the CASPT2/CC approach is estimated at around 2 kcal mol in favor of high spin states.

摘要

在之前关于多组态二级微扰理论(CASPT2)在描述第一行过渡金属体系中自旋态能学方面的性能的工作中[Pierloot 等人,J. Chem. Theory Comput.,2017,13,537-553],我们表明标准的 CASPT2 对价相关很有效,但不能准确描述金属半芯(3s3p)相关效应。这种失败部分导致了 CASPT2 对高自旋态的明显偏好。在本文中,我们扩展了之前的工作,并表明这种偏差可以部分通过组合的 CASPT2/CC 方法来消除:使用高质量的 CASPT2 和广泛的相关一致基组进行价相关,以及使用最小基组进行低成本 CCSD(T)计算金属半芯(3s3p)相关效应。我们通过研究一系列模拟化学和生物化学中氧化催化过程中重要中间体的铁配合物的自旋态能学,证明了这种方法的效率。基于与本工作和之前工作中裸 CCSD(T)结果的比较,CASPT2/CC 方法的平均误差估计约为 2 kcal/mol,有利于高自旋态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验