Pierloot Kristine, Phung Quan Manh, Domingo Alex
Department of Chemistry, KU Leuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium.
J Chem Theory Comput. 2017 Feb 14;13(2):537-553. doi: 10.1021/acs.jctc.6b01005. Epub 2017 Jan 9.
This paper presents an in-depth study of the performance of multiconfigurational second-order perturbation theory (CASPT2, NEVPT2) in describing spin state energetics in first-row transition metal (TM) systems, including bare TM ions, TM ions in a field of point charges (TM/PC), and an extensive series of TM complexes, where the main focus lies on the (3s3p) correlation contribution to the relative energies of different spin states. To the best of our knowledge, this is the first systematic NEVPT2 investigation of TM spin state energetics. CASPT2 has been employed in several previous studies but was regularly found to be biased toward high spin states. The bias was attributed to a too low value of the so-called IPEA shift ϵ, an empirical correction in the CASPT2 zeroth-order Hamiltonian with a standard value of 0.25 hartree. Based on comparisons with experiment (TM ions) and calculations with the multireference configuration interaction (TM ions and TM/PC systems) and coupled-cluster (TM complexes) methods, we demonstrate in this work that standard CASPT2 works well for valence correlation and that its bias toward high-spin states is caused by an erratic description of (3s3p) correlation effects. The latter problem only occurs for spin transitions involving a ligand field (de)excitation, not in bare TM ions. At the same time the (3s3p) correlation contribution also becomes strongly ϵ dependent. The error can be reduced by increasing ϵ but only at the expense of deteriorating the CASPT2 description of valence correlation in the TM complexes. The alternative NEVPT2 method works well for bare TM and TM/PC systems, but its results for the TM complexes are disappointing, with large errors both for the valence and (3s3p) correlation contributions to the relative energies of different spin states.
本文深入研究了多组态二阶微扰理论(CASPT2、NEVPT2)在描述第一行过渡金属(TM)体系自旋态能量学方面的性能,这些体系包括裸TM离子、处于点电荷场中的TM离子(TM/PC)以及一系列广泛的TM配合物,主要关注(3s3p)关联对不同自旋态相对能量的贡献。据我们所知,这是对TM自旋态能量学的首次系统性NEVPT2研究。CASPT2已在先前的多项研究中使用,但经常发现其偏向高自旋态。这种偏差归因于所谓的IPEA位移ϵ值过低,ϵ是CASPT2零阶哈密顿量中的一种经验校正,标准值为0.25哈特里。通过与实验(TM离子)以及使用多参考组态相互作用(TM离子和TM/PC体系)和耦合簇(TM配合物)方法的计算进行比较,我们在这项工作中证明,标准CASPT2对价层关联效果良好,其对高自旋态的偏差是由对(3s3p)关联效应的不稳定描述引起的。后一个问题仅发生在涉及配体场(去)激发的自旋跃迁中,而在裸TM离子中不会出现。同时,(3s3p)关联贡献也强烈依赖于ϵ。可以通过增加ϵ来减少误差,但这是以牺牲CASPT2对TM配合物价层关联的描述为代价的。另一种NEVPT2方法在裸TM和TM/PC体系中效果良好,但其对TM配合物的结果令人失望,对于不同自旋态相对能量的价层和(3s3p)关联贡献都有很大误差。