Suppr超能文献

利用陆地卫星OLI影像和偏最小二乘回归算法绘制中国吉林省西部半干旱地区土壤盐分/碱度图

Mapping Soil Salinity/Sodicity by using Landsat OLI Imagery and PLSR Algorithm over Semiarid West Jilin Province, China.

作者信息

Yu Hao, Liu Mingyue, Du Baojia, Wang Zongming, Hu Liangjun, Zhang Bai

机构信息

Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Key Laboratory of Wetland Ecology and Environment, Changchun 130102, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2018 Mar 31;18(4):1048. doi: 10.3390/s18041048.

Abstract

Soil salinity and sodicity can significantly reduce the value and the productivity of affected lands, posing degradation, and threats to sustainable development of natural resources on earth. This research attempted to map soil salinity/sodicity via disentangling the relationships between Landsat 8 Operational Land Imager (OLI) imagery and in-situ measurements (EC, pH) over the west Jilin of China. We established the retrieval models for soil salinity and sodicity using Partial Least Square Regression (PLSR). Spatial distribution of the soils that were subjected to hybridized salinity and sodicity (HSS) was obtained by overlay analysis using maps of soil salinity and sodicity in geographical information system (GIS) environment. We analyzed the severity and occurring sizes of soil salinity, sodicity, and HSS with regard to specified soil types and land cover. Results indicated that the models' accuracy was improved by combining the reflectance bands and spectral indices that were mathematically transformed. Therefore, our results stipulated that the OLI imagery and PLSR method applied to mapping soil salinity and sodicity in the region. The mapping results revealed that the areas of soil salinity, sodicity, and HSS were 1.61 × 10⁶ hm², 1.46 × 10⁶ hm², and 1.36 × 10⁶ hm², respectively. Also, the occurring area of moderate and intensive sodicity was larger than that of salinity. This research may underpin efficiently mapping regional salinity/sodicity occurrences, understanding the linkages between spectral reflectance and ground measurements of soil salinity and sodicity, and provide tools for soil salinity monitoring and the sustainable utilization of land resources.

摘要

土壤盐碱化会显著降低受影响土地的价值和生产力,对地球上自然资源的可持续发展构成退化和威胁。本研究试图通过厘清中国吉林西部陆地卫星8号运行陆地成像仪(OLI)影像与现场测量值(电导率、pH值)之间的关系来绘制土壤盐碱化分布图。我们使用偏最小二乘回归(PLSR)建立了土壤盐碱化的反演模型。通过在地理信息系统(GIS)环境中叠加土壤盐碱化地图,获得了盐碱化混合土壤(HSS)的空间分布。我们针对特定土壤类型和土地覆盖分析了土壤盐碱化、碱化及盐碱化混合土壤的严重程度和发生面积。结果表明,通过组合经过数学变换的反射波段和光谱指数,提高了模型的精度。因此,我们的研究结果表明,OLI影像和PLSR方法可用于绘制该地区的土壤盐碱化图。制图结果显示,土壤盐碱化、碱化及盐碱化混合土壤的面积分别为1.61×10⁶公顷、1.46×10⁶公顷和1.36×10⁶公顷。此外,中度和重度碱化的发生面积大于盐碱化面积。本研究可为高效绘制区域盐碱化分布图、理解土壤盐碱化光谱反射率与地面测量之间的联系提供支持,并为土壤盐碱化监测和土地资源可持续利用提供工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d98/5948890/5fbd43a14d6f/sensors-18-01048-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验