Suppr超能文献

无需口服葡萄糖耐量试验预测葡萄糖耐量

Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test.

作者信息

Babbar Rohit, Heni Martin, Peter Andreas, Hrabě de Angelis Martin, Häring Hans-Ulrich, Fritsche Andreas, Preissl Hubert, Schölkopf Bernhard, Wagner Róbert

机构信息

Department of Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany.

Aalto University, Helsinki, Finland.

出版信息

Front Endocrinol (Lausanne). 2018 Mar 19;9:82. doi: 10.3389/fendo.2018.00082. eCollection 2018.

Abstract

INTRODUCTION

Impaired glucose tolerance (IGT) is diagnosed by a standardized oral glucose tolerance test (OGTT). However, the OGTT is laborious, and when not performed, glucose tolerance cannot be determined from fasting samples retrospectively. We tested if glucose tolerance status is reasonably predictable from a combination of demographic, anthropometric, and laboratory data assessed at one time point in a fasting state.

METHODS

Given a set of 22 variables selected upon clinical feasibility such as sex, age, height, weight, waist circumference, blood pressure, fasting glucose, HbA1c, hemoglobin, mean corpuscular volume, serum potassium, fasting levels of insulin, C-peptide, triglyceride, non-esterified fatty acids (NEFA), proinsulin, prolactin, cholesterol, low-density lipoprotein, HDL, uric acid, liver transaminases, and ferritin, we used supervised machine learning to estimate glucose tolerance status in 2,337 participants of the TUEF study who were recruited before 2012. We tested the performance of 10 different machine learning classifiers on data from 929 participants in the test set who were recruited after 2012. In addition, reproducibility of IGT was analyzed in 78 participants who had 2 repeated OGTTs within 1 year.

RESULTS

The most accurate prediction of IGT was reached with the recursive partitioning method (accuracy = 0.78). For all classifiers, mean accuracy was 0.73 ± 0.04. The most important model variable was fasting glucose in all models. Using mean variable importance across all models, fasting glucose was followed by NEFA, triglycerides, HbA1c, and C-peptide. The accuracy of predicting IGT from a previous OGTT was 0.77.

CONCLUSION

Machine learning methods yield moderate accuracy in predicting glucose tolerance from a wide set of clinical and laboratory variables. A substitution of OGTT does not currently seem to be feasible. An important constraint could be the limited reproducibility of glucose tolerance status during a subsequent OGTT.

摘要

引言

糖耐量受损(IGT)通过标准化口服葡萄糖耐量试验(OGTT)进行诊断。然而,OGTT操作繁琐,若未进行该试验,则无法通过空腹样本回顾性确定糖耐量。我们测试了在空腹状态下某一时刻评估的人口统计学、人体测量学和实验室数据组合能否合理预测糖耐量状态。

方法

基于临床可行性选择了一组22个变量,如性别、年龄、身高、体重、腰围、血压、空腹血糖、糖化血红蛋白(HbA1c)、血红蛋白、平均红细胞体积、血清钾、空腹胰岛素水平、C肽、甘油三酯、非酯化脂肪酸(NEFA)、胰岛素原、催乳素、胆固醇、低密度脂蛋白、高密度脂蛋白、尿酸、肝转氨酶和铁蛋白,我们使用监督式机器学习来估计2012年前招募的TUEF研究中2337名参与者的糖耐量状态。我们在2012年后招募的929名测试集参与者的数据上测试了10种不同机器学习分类器的性能。此外,对78名在1年内进行了2次重复OGTT的参与者的IGT重复性进行了分析。

结果

递归划分方法对IGT的预测最为准确(准确率 = 0.78)。对于所有分类器,平均准确率为0.73±0.04。所有模型中最重要的模型变量是空腹血糖。综合所有模型的平均变量重要性来看,排在空腹血糖之后的是NEFA、甘油三酯、HbA1c和C肽。根据之前的OGTT预测IGT的准确率为0.77。

结论

机器学习方法在从一系列临床和实验室变量预测糖耐量方面具有中等准确率。目前用其他方法替代OGTT似乎不可行。一个重要的限制因素可能是后续OGTT期间糖耐量状态的可重复性有限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66da/5868129/dcc7d6719a49/fendo-09-00082-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验