Suppr超能文献

太空飞行会改变基因表达以应对抗生素暴露,并揭示氧化应激反应的作用。

Spaceflight Modifies Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response.

作者信息

Aunins Thomas R, Erickson Keesha E, Prasad Nripesh, Levy Shawn E, Jones Angela, Shrestha Shristi, Mastracchio Rick, Stodieck Louis, Klaus David, Zea Luis, Chatterjee Anushree

机构信息

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States.

Genomic Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States.

出版信息

Front Microbiol. 2018 Mar 16;9:310. doi: 10.3389/fmicb.2018.00310. eCollection 2018.

Abstract

Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of to both microgravity and antibiotic concentration. was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress conditions and potential strategies to prevent antimicrobial-resistance in space and on Earth.

摘要

在太空实验的微重力条件下培养的细菌已被发现会经历独特的生理反应,从细胞形态和生长动力学的改变到推测的对抗生素耐受性增加。对此行为的一个常见理论是轨道环境中重力驱动对流过程的丧失,这导致细胞外营养物质可用性降低以及细菌副产物在细胞附近积累。为了进一步表征这些反应,本研究调查了[细菌名称]对微重力和抗生素浓度的转录组反应。[细菌名称]在国际空间站上培养,同时存在浓度不断增加的抗生素庆大霉素,并在地球上进行了相同的地面对照实验。在这里我们表明,在培养49小时内,[细菌名称]在太空中比在地球上能适应更高浓度的抗生素生长,并且在两种环境中,随着药物浓度增加,63个基因的表达表现出一致变化,包括与氧化应激和饥饿反应相关的特定反应。此外,与地面对照中的等效浓度直接比较时,我们发现50个应激反应基因在微重力条件下上调。我们得出结论,微重力下抗生素耐受性增加可能不仅归因于转运过程的减少,还归因于应激反应基因重叠效应赋予的抗生素交叉耐药反应。我们的数据表明,微重力环境传达的营养饥饿和酸休克直接应激可偶然上调与抗生素应激相关的应激反应途径,从而导致在太空实验中观察到细菌对抗生素应激耐受性增加。这些结果为细菌在极端应激条件下的适应能力以及在太空和地球上预防抗菌耐药性的潜在策略提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6336/5865062/8af59e451af7/fmicb-09-00310-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验