Suppr超能文献

大冠根数量可改善表土觅食和磷吸收。

Large Crown Root Number Improves Topsoil Foraging and Phosphorus Acquisition.

机构信息

Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Changchun 130024, Jilin Province, China.

Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802.

出版信息

Plant Physiol. 2018 May;177(1):90-104. doi: 10.1104/pp.18.00234. Epub 2018 Apr 4.

Abstract

Suboptimal phosphorus (P) availability is a primary constraint to plant growth on Earth. We tested the hypothesis that maize () genotypes with large crown root number (CN) will have shallower rooting depth and improved P acquisition from low-P soils. Maize recombinant inbred lines with contrasting CN were evaluated under suboptimal P availability in greenhouse mesocosms and the field. Under P stress in mesocosms, the large-CN phenotype had 48% greater root respiration, 24% shallower rooting depth, 32% greater root length density in the topsoil, 37% greater leaf P concentration, 48% greater leaf photosynthesis, 33% greater stomatal conductance, and 44% greater shoot biomass than the small-CN phenotype. Under P stress in the field, the large-CN phenotype had 32% shallower rooting depth, 51% greater root length density in the topsoil, 44% greater leaf P concentration, 18% greater leaf photosynthesis, 21% greater stomatal conductance, 23% greater shoot biomass at anthesis, and 28% greater yield than the small-CN phenotype. These results support the hypothesis that large CN improves plant P acquisition from low-P soils by reducing rooting depth and increasing topsoil foraging. The large-CN phenotype merits consideration as a selection target to improve P capture in maize and possibly other cereal crops.

摘要

磷(P)供应不足是地球上植物生长的主要限制因素。我们检验了这样一个假设,即具有较大冠根数量(CN)的玉米基因型将具有较浅的根系深度,并能从低磷土壤中更好地获取磷。在温室中使用具有不同 CN 的玉米重组自交系进行了评估,以检验其在低磷可用性下的表现。在温室中的 P 胁迫下,大 CN 表型的根呼吸率增加了 48%,根系深度浅了 24%,表土中的根长密度增加了 32%,叶片 P 浓度增加了 37%,叶片光合作用增加了 48%,气孔导度增加了 33%,地上部生物量增加了 44%。在田间 P 胁迫下,大 CN 表型的根系深度浅了 32%,表土中的根长密度增加了 51%,叶片 P 浓度增加了 44%,叶片光合作用增加了 18%,气孔导度增加了 21%,抽穗期地上部生物量增加了 23%,产量增加了 28%。这些结果支持了这样一个假设,即较大的 CN 通过减少根系深度和增加表土觅食来改善植物从低磷土壤中获取磷的能力。大 CN 表型值得作为一个选择目标,以提高玉米和可能其他谷类作物的磷捕获能力。

相似文献

5

引用本文的文献

4
7
Root phenotypes for improved nitrogen capture.用于改善氮素捕获的根系表型。
Plant Soil. 2024;502(1-2):31-85. doi: 10.1007/s11104-023-06301-2. Epub 2023 Oct 4.
9
Genomic basis determining root system architecture in maize.决定玉米根系结构的基因组基础。
Theor Appl Genet. 2024 Apr 12;137(5):102. doi: 10.1007/s00122-024-04606-z.

本文引用的文献

8
Rightsizing root phenotypes for drought resistance.为抗旱性调整根系表型。
J Exp Bot. 2018 Jun 6;69(13):3279-3292. doi: 10.1093/jxb/ery048.
9
The genetic architecture of nodal root number in maize.玉米节点根数量的遗传结构。
Plant J. 2018 Mar;93(6):1032-1044. doi: 10.1111/tpj.13828. Epub 2018 Feb 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验