Suppr超能文献

异戊二烯氧化生成乙二醛及其对美国东南部有机气溶胶贡献的观测限制

Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States.

作者信息

Li Jingyi, Mao Jingqiu, Min Kyung-Eun, Washenfelder Rebecca A, Brown Steven S, Kaiser Jennifer, Keutsch Frank N, Volkamer Rainer, Wolfe Glenn M, Hanisco Thomas F, Pollack Ilana B, Ryerson Thomas B, Graus Martin, Gilman Jessica B, Lerner Brian M, Warneke Carsten, de Gouw Joost A, Middlebrook Ann M, Liao Jin, Welti André, Henderson Barron H, McNeill V Faye, Hall Samuel R, Ullmann Kirk, Donner Leo J, Paulot Fabien, Horowitz Larry W

机构信息

Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey, USA.

Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration, Princeton, New Jersey, USA.

出版信息

J Geophys Res Atmos. 2016 Aug 27;121(16):9849-9861. doi: 10.1002/2016JD025331. Epub 2016 Jul 31.

Abstract

We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γ of 2 × 10, and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 μg m secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde ( = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of IEPOX peroxy radicals (IEPOXOO) with HO. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

摘要

我们使用零维光化学箱模型和三维全球化学气候模型,并结合美国国家海洋和大气管理局(NOAA)东南关联(SENEX)飞机观测活动的数据,来了解美国东南部乙二醛的来源和汇。箱模型模拟结果表明,三种异戊二烯氧化机制(AM3ST、AM3B和MCM v3.3.1)产生的乙二醛量存在很大差异。然后将这些机制应用于三维全球化学气候模型。与实地观测结果的对比表明,AM3ST机制(有效反应吸收系数γ为2×10)以及不存在乙二醛非均相损失的AM3B机制,能最好地再现乙二醛的平均垂直分布。这两种机制导致美国东南部夏季边界层中由乙二醛生成的二次有机气溶胶(SOA)为0 - 0.8 μg/m。我们认为这是乙二醛对SOA贡献的下限,因为我们的模型未包含异戊二烯以外的其他乙二醛来源。此外,我们发现AM3B机制在甲醛以及乙二醛与甲醛的相关性( = [GLYX]/[HCHO])方面表现出更好的一致性,这是由于δ - 异戊二烯过氧自由基(δ - ISOPO)受到抑制。我们还发现MCM v3.3.1可能低估了异戊二烯氧化产生的乙二醛量,部分原因是环氧乙烷过氧自由基(IEPOXOO)与HO反应的产率被低估。我们的研究强调,乙二醛的气相生成在量化其对SOA的贡献方面存在很大不确定性。

相似文献

1
4
Significant Contributions of Isoprene to Summertime Secondary Organic Aerosol in Eastern United States.
Environ Sci Technol. 2015 Jul 7;49(13):7834-42. doi: 10.1021/acs.est.5b02514. Epub 2015 Jun 11.
5
Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.
Environ Sci Technol. 2014 Oct 21;48(20):11919-25. doi: 10.1021/es502020j. Epub 2014 Oct 1.
6
Airborne measurements of organosulfates over the continental U.S.
J Geophys Res Atmos. 2015 Apr 16;120(7):2990-3005. doi: 10.1002/2014JD022378. Epub 2015 Apr 3.
8
Multigeneration Chemistry in Secondary Organic Aerosol Formation from Nitrate Radical Oxidation of Isoprene.
ACS Earth Space Chem. 2025 Jan 27;9(2):411-423. doi: 10.1021/acsearthspacechem.4c00417. eCollection 2025 Feb 20.
9
Photooxidation of 2-methyl-3-Buten-2-ol (MBO) as a potential source of secondary organic aerosol.
Environ Sci Technol. 2009 Jul 1;43(13):4647-52. doi: 10.1021/es802560w.
10
Observational insights into aerosol formation from isoprene.
Environ Sci Technol. 2013 Oct 15;47(20):11403-13. doi: 10.1021/es4011064. Epub 2013 Oct 3.

引用本文的文献

2
Aqueous Photochemistry of 2-Oxocarboxylic Acids: Evidence, Mechanisms, and Atmospheric Impact.
Molecules. 2021 Aug 31;26(17):5278. doi: 10.3390/molecules26175278.
4
On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America.
Atmos Chem Phys. 2019 Jul;19(14):9097-9123. doi: 10.5194/acp-19-9097-2019. Epub 2019 Jul 17.
5
Southeast Atmosphere Studies: learning from model-observation syntheses.
Atmos Chem Phys. 2018;18(4):2615-2651. doi: 10.5194/acp-18-2615-2018. Epub 2018 Feb 22.
6
Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013.
Atmos Meas Tech. 2016;9(7):3063-3093. doi: 10.5194/amt-9-3063-2016. Epub 2016 Jul 18.
7
Formaldehyde production from isoprene oxidation across NO regimes.
Atmos Chem Phys. 2016;16(4):2597-2610. doi: 10.5194/acp-16-2597-2016. Epub 2016 Mar 2.
8
Emissions of Glyoxal and Other Carbonyl Compounds from Agricultural Biomass Burning Plumes Sampled by Aircraft.
Environ Sci Technol. 2017 Oct 17;51(20):11761-11770. doi: 10.1021/acs.est.7b03517. Epub 2017 Oct 4.

本文引用的文献

2
Investigation of a potential HCHO measurement artifact from ISOPOOH.
Atmos Meas Tech. 2016;9(9):4561-4568. doi: 10.5194/amt-9-4561-2016. Epub 2016 Sep 16.
3
Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013.
Atmos Meas Tech. 2016;9(7):3063-3093. doi: 10.5194/amt-9-3063-2016. Epub 2016 Jul 18.
4
Formaldehyde production from isoprene oxidation across NO regimes.
Atmos Chem Phys. 2016;16(4):2597-2610. doi: 10.5194/acp-16-2597-2016. Epub 2016 Mar 2.
5
Glyoxal and Methylglyoxal Setschenow Salting Constants in Sulfate, Nitrate, and Chloride Solutions: Measurements and Gibbs Energies.
Environ Sci Technol. 2015 Oct 6;49(19):11500-8. doi: 10.1021/acs.est.5b02782. Epub 2015 Sep 22.
6
Kinetics and Products of the Reaction of the First-Generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with OH.
J Phys Chem A. 2016 Mar 10;120(9):1441-51. doi: 10.1021/acs.jpca.5b06532. Epub 2015 Sep 15.
7
Significant Contributions of Isoprene to Summertime Secondary Organic Aerosol in Eastern United States.
Environ Sci Technol. 2015 Jul 7;49(13):7834-42. doi: 10.1021/acs.est.5b02514. Epub 2015 Jun 11.
8
Rapid deposition of oxidized biogenic compounds to a temperate forest.
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):E392-401. doi: 10.1073/pnas.1418702112. Epub 2015 Jan 20.
9
Atmospheric fate of methyl vinyl ketone: peroxy radical reactions with NO and HO2.
J Phys Chem A. 2015 May 14;119(19):4562-72. doi: 10.1021/jp5107058. Epub 2015 Jan 8.
10
Computational study of the effect of glyoxal-sulfate clustering on the Henry's law coefficient of glyoxal.
J Phys Chem A. 2015 May 14;119(19):4509-14. doi: 10.1021/jp510304c. Epub 2014 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验