Li Jingyi, Mao Jingqiu, Min Kyung-Eun, Washenfelder Rebecca A, Brown Steven S, Kaiser Jennifer, Keutsch Frank N, Volkamer Rainer, Wolfe Glenn M, Hanisco Thomas F, Pollack Ilana B, Ryerson Thomas B, Graus Martin, Gilman Jessica B, Lerner Brian M, Warneke Carsten, de Gouw Joost A, Middlebrook Ann M, Liao Jin, Welti André, Henderson Barron H, McNeill V Faye, Hall Samuel R, Ullmann Kirk, Donner Leo J, Paulot Fabien, Horowitz Larry W
Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey, USA.
Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration, Princeton, New Jersey, USA.
J Geophys Res Atmos. 2016 Aug 27;121(16):9849-9861. doi: 10.1002/2016JD025331. Epub 2016 Jul 31.
We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γ of 2 × 10, and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 μg m secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde ( = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of IEPOX peroxy radicals (IEPOXOO) with HO. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.
我们使用零维光化学箱模型和三维全球化学气候模型,并结合美国国家海洋和大气管理局(NOAA)东南关联(SENEX)飞机观测活动的数据,来了解美国东南部乙二醛的来源和汇。箱模型模拟结果表明,三种异戊二烯氧化机制(AM3ST、AM3B和MCM v3.3.1)产生的乙二醛量存在很大差异。然后将这些机制应用于三维全球化学气候模型。与实地观测结果的对比表明,AM3ST机制(有效反应吸收系数γ为2×10)以及不存在乙二醛非均相损失的AM3B机制,能最好地再现乙二醛的平均垂直分布。这两种机制导致美国东南部夏季边界层中由乙二醛生成的二次有机气溶胶(SOA)为0 - 0.8 μg/m。我们认为这是乙二醛对SOA贡献的下限,因为我们的模型未包含异戊二烯以外的其他乙二醛来源。此外,我们发现AM3B机制在甲醛以及乙二醛与甲醛的相关性( = [GLYX]/[HCHO])方面表现出更好的一致性,这是由于δ - 异戊二烯过氧自由基(δ - ISOPO)受到抑制。我们还发现MCM v3.3.1可能低估了异戊二烯氧化产生的乙二醛量,部分原因是环氧乙烷过氧自由基(IEPOXOO)与HO反应的产率被低估。我们的研究强调,乙二醛的气相生成在量化其对SOA的贡献方面存在很大不确定性。