Marais E A, Jacob D J, Jimenez J L, Campuzano-Jost P, Day D A, Hu W, Krechmer J, Zhu L, Kim P S, Miller C C, Fisher J A, Travis K, Yu K, Hanisco T F, Wolfe G M, Arkinson H L, Pye H O T, Froyd K D, Liao J, McNeill V F
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
Atmos Chem Phys. 2016 Feb;16(3):1603-1618. doi: 10.5194/acp-16-1603-2016. Epub 2016 Feb 11.
Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients () for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEACRS) and ground-based (SOAS) observations over the Southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NO ≡ NO + NO) over the Southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO) react significantly with both NO (high-NO pathway) and HO (low-NO pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58% of isoprene SOA) from the low-NO pathway and glyoxal (28%) from both low- and high-NO pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEACRS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NO emissions decrease (favoring the low-NO pathway for isoprene oxidation), but decrease more strongly as SO emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US EPA projects 2013-2025 decreases in anthropogenic emissions of 34% for NO (leading to 7% increase in isoprene SOA) and 48% for SO (35% decrease in isoprene SOA). Reducing SO emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM from SO emission controls.
植被排放的异戊二烯是二次有机气溶胶(SOA)的重要前体物,但其形成机制和产率尚不确定。在异戊二烯排放区域典型的潮湿条件下,气溶胶主要呈水相。在此,我们结合详细的气相异戊二烯氧化方案,开发了一种用于异戊二烯SOA形成的水相机制。该机制基于水溶性异戊二烯氧化产物的气溶胶反应吸收系数(),包括对气溶胶酸度和亲核试剂浓度的敏感性。我们使用GEOS-Chem化学传输模型,将此机制应用于模拟2013年夏季美国东南部的飞机观测(SEACRS)和地面观测(SOAS)。美国东南部的氮氧化物(NO≡NO + NO)排放量使得异戊二烯氧化产生的过氧自由基(ISOPO)与NO(高NO路径)和HO(低NO路径)均发生显著反应,从而导致不同系列的异戊二烯SOA前体物。我们发现异戊二烯氧化产生的SOA平均质量产率为3.3%,这与观测到的总细有机气溶胶(OA)与甲醛(异戊二烯氧化产物)之间的关系一致。异戊二烯SOA的产生主要由两种直接的气相前体物贡献,即来自低NO路径的异戊二烯环氧二醇(IEPOX,占异戊二烯SOA的58%)和来自低NO路径与高NO路径的乙二醛(28%)。这种物种构成与来自SOAS和SEACRS的IEPOX SOA观测结果一致。观测显示IEPOX SOA与硫酸盐气溶胶之间存在很强的关系,我们将其解释为硫酸盐对气溶胶酸度和体积的影响所致。随着NO排放量的减少(有利于异戊二烯氧化的低NO路径),异戊二烯SOA浓度增加,但随着SO排放量的减少,其下降幅度更大(由于硫酸盐对气溶胶酸度和体积的影响)。美国环境保护局预计2013 - 2025年人为排放量中,NO减少34%(导致异戊二烯SOA增加7%),SO减少48%(异戊二烯SOA减少35%)。减少SO排放会使硫酸盐和异戊二烯SOA减少类似的幅度,这意味着控制SO排放对颗粒物有2倍的协同效益。