Zhao Xue Jiao, Kuang Shuang Yang, Wang Zhong Lin, Zhu Guang
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China.
School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China.
ACS Nano. 2018 May 22;12(5):4280-4285. doi: 10.1021/acsnano.7b08716. Epub 2018 Apr 18.
Harvesting water wave energy presents a significantly practical route to energy supply for self-powered wireless sensing networks. Here we report a networked integrated triboelectric nanogenerator (NI-TENG) as a highly adaptive means of harvesting energy from interfacing interactions with various types of water waves. Having an arrayed networking structure, the NI-TENG can accommodate diverse water wave motions and generate stable electric output regardless of how random the water wave is. Nanoscaled surface morphology consisting of dense nanowire arrays is the key for obtaining high electric output. A NI-TENG having an area of 100 × 70 mm can produce a stable short-circuit current of 13.5 μA and corresponding electric power of 1.03 mW at a water wave height of 12 cm. This merit promises practical applications of the NI-TENG in real circumstances, where water waves are highly variable and unpredictable. After energy storage, the generated electric energy can drive wireless sensing by autonomously transmitting data at a period less than 1 min. This work proposes a viable solution for powering individual standalone nodes in a wireless sensor network. Potential applications include but are not limited to long-term environment monitoring, marine surveillance, and off-shore navigation.
收集水波能量为自供电无线传感网络的能源供应提供了一条极具实用性的途径。在此,我们报道了一种网络化集成摩擦纳米发电机(NI-TENG),它是一种从与各类水波的界面相互作用中高效收集能量的高度自适应方式。NI-TENG具有阵列式网络结构,无论水波多么随机,它都能适应各种水波运动并产生稳定的电输出。由密集纳米线阵列构成的纳米级表面形态是获得高电输出的关键。一个面积为100×70毫米的NI-TENG在水波高度为12厘米时,能产生13.5微安的稳定短路电流以及1.03毫瓦的相应电功率。这一优点保证了NI-TENG在实际环境中的实际应用,在这些环境中水波高度变化大且不可预测。储能后,所产生的电能可通过以小于1分钟的周期自主传输数据来驱动无线传感。这项工作为无线传感器网络中的单个独立节点供电提出了一个可行的解决方案。潜在应用包括但不限于长期环境监测、海洋监视和近海导航。