Suppr超能文献

运用临床变量聚类分析识别急性心力衰竭的新表型。

Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables.

机构信息

Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan.

Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan.

出版信息

Int J Cardiol. 2018 Jul 1;262:57-63. doi: 10.1016/j.ijcard.2018.03.098. Epub 2018 Mar 29.

Abstract

BACKGROUND

Acute heart failure (AHF) is a heterogeneous disease caused by various cardiovascular (CV) pathophysiology and multiple non-CV comorbidities. We aimed to identify clinically important subgroups to improve our understanding of the pathophysiology of AHF and inform clinical decision-making.

METHODS

We evaluated detailed clinical data of 345 consecutive AHF patients using non-hierarchical cluster analysis of 77 variables, including age, sex, HF etiology, comorbidities, physical findings, laboratory data, electrocardiogram, echocardiogram and treatment during hospitalization. Cox proportional hazards regression analysis was performed to estimate the association between the clusters and clinical outcomes.

RESULTS

Three clusters were identified. Cluster 1 (n=108) represented "vascular failure". This cluster had the highest average systolic blood pressure at admission and lung congestion with type 2 respiratory failure. Cluster 2 (n=89) represented "cardiac and renal failure". They had the lowest ejection fraction (EF) and worst renal function. Cluster 3 (n=148) comprised mostly older patients and had the highest prevalence of atrial fibrillation and preserved EF. Death or HF hospitalization within 12-month occurred in 23% of Cluster 1, 36% of Cluster 2 and 36% of Cluster 3 (p=0.034). Compared with Cluster 1, risk of death or HF hospitalization was 1.74 (95% CI, 1.03-2.95, p=0.037) for Cluster 2 and 1.82 (95% CI, 1.13-2.93, p=0.014) for Cluster 3.

CONCLUSIONS

Cluster analysis may be effective in producing clinically relevant categories of AHF, and may suggest underlying pathophysiology and potential utility in predicting clinical outcomes.

摘要

背景

急性心力衰竭(AHF)是一种由多种心血管(CV)病理生理学和多种非 CV 合并症引起的异质性疾病。我们旨在确定临床上重要的亚组,以提高我们对 AHF 病理生理学的理解并为临床决策提供信息。

方法

我们使用 77 个变量的非层次聚类分析评估了 345 例连续 AHF 患者的详细临床数据,包括年龄、性别、HF 病因、合并症、体格检查、实验室数据、心电图、超声心动图和住院期间的治疗。使用 Cox 比例风险回归分析来估计聚类与临床结局之间的关联。

结果

确定了三个聚类。聚类 1(n=108)代表“血管衰竭”。该聚类在入院时的平均收缩压最高,并且存在 2 型呼吸衰竭伴肺充血。聚类 2(n=89)代表“心脏和肾脏衰竭”。他们的射血分数(EF)最低,肾功能最差。聚类 3(n=148)主要由年龄较大的患者组成,心房颤动和 EF 保留的患病率最高。在 12 个月内死亡或因 HF 住院的患者在聚类 1 中占 23%,在聚类 2 中占 36%,在聚类 3 中占 36%(p=0.034)。与聚类 1 相比,聚类 2 的死亡或 HF 住院风险为 1.74(95%CI,1.03-2.95,p=0.037),聚类 3 的死亡或 HF 住院风险为 1.82(95%CI,1.13-2.93,p=0.014)。

结论

聚类分析可能在产生临床上相关的 AHF 类别方面有效,并可能提示潜在的病理生理学并有助于预测临床结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验