Suppr超能文献

用于超声心动图的深度学习:临床医生入门与未来展望:最新综述

Deep Learning for Echocardiography: Introduction for Clinicians and Future Vision: State-of-the-Art Review.

作者信息

Krittanawong Chayakrit, Omar Alaa Mabrouk Salem, Narula Sukrit, Sengupta Partho P, Glicksberg Benjamin S, Narula Jagat, Argulian Edgar

机构信息

Cardiology Division, NYU Langone Health, NYU School of Medicine, New York, NY 10016, USA.

Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY 10029, USA.

出版信息

Life (Basel). 2023 Apr 17;13(4):1029. doi: 10.3390/life13041029.

Abstract

Exponential growth in data storage and computational power is rapidly narrowing the gap between translating findings from advanced clinical informatics into cardiovascular clinical practice. Specifically, cardiovascular imaging has the distinct advantage in providing a great quantity of data for potentially rich insights, but nuanced interpretation requires a high-level skillset that few individuals possess. A subset of machine learning, deep learning (DL), is a modality that has shown promise, particularly in the areas of image recognition, computer vision, and video classification. Due to a low signal-to-noise ratio, echocardiographic data tend to be challenging to classify; however, utilization of robust DL architectures may help clinicians and researchers automate conventional human tasks and catalyze the extraction of clinically useful data from the petabytes of collected imaging data. The promise is extending far and beyond towards a contactless echocardiographic exam-a dream that is much needed in this time of uncertainty and social distancing brought on by a stunning pandemic culture. In the current review, we discuss state-of-the-art DL techniques and architectures that can be used for image and video classification, and future directions in echocardiographic research in the current era.

摘要

数据存储和计算能力的指数级增长正在迅速缩小将先进临床信息学的研究成果转化为心血管临床实践之间的差距。具体而言,心血管成像在提供大量数据以获得潜在丰富见解方面具有独特优势,但细致入微的解读需要高水平的技能,而具备这种技能的人很少。机器学习的一个子集——深度学习(DL),是一种已显示出前景的模式,特别是在图像识别、计算机视觉和视频分类领域。由于信噪比低,超声心动图数据的分类往往具有挑战性;然而,利用强大的深度学习架构可能有助于临床医生和研究人员自动化传统的人工任务,并促进从数PB的收集成像数据中提取临床有用数据。这一前景正朝着非接触式超声心动图检查不断拓展——在当前由惊人的大流行文化带来的不确定性和社交距离时期,这是一个非常需要的梦想。在当前的综述中,我们讨论了可用于图像和视频分类的最新深度学习技术和架构,以及当前时代超声心动图研究的未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb6c/10145844/f6d4b292ac86/life-13-01029-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验