Fischer Rebecca A, Nimmo Francis, O'Brien David P
Smithsonian Institution, National Museum of Natural History, Department of Mineral Sciences.
University of California Santa Cruz, Department of Earth and Planetary Sciences.
Earth Planet Sci Lett. 2018 Jan 15;482:105-114. doi: 10.1016/j.epsl.2017.10.055. Epub 2017 Nov 13.
The Ru-Mo isotopic compositions of inner Solar System bodies may reflect the provenance of accreted material and how it evolved with time, both of which are controlled by the accretion scenario these bodies experienced. Here we use a total of 116 -body simulations of terrestrial planet accretion, run in the Eccentric Jupiter and Saturn (EJS), Circular Jupiter and Saturn (CJS), and Grand Tack scenarios, to model the Ru-Mo anomalies of Earth, Mars, and Theia analogues. This model starts by applying an initial step function in Ru-Mo isotopic composition, with compositions reflecting those in meteorites, and traces compositional evolution as planets accrete. The mass-weighted provenance of the resulting planets reveals more radial mixing in Grand Tack simulations than in EJS/CJS simulations, and more efficient mixing among late-accreted material than during the main phase of accretion in EJS/CJS simulations. We find that an extensive homogenous inner disk region is required to reproduce Earth's observed Ru-Mo composition. EJS/CJS simulations require a homogeneous reservoir in the inner disk extending to ≥3-4 AU (≥74-98% of initial mass) to reproduce Earth's composition, while Grand Tack simulations require a homogeneous reservoir extending to ≥3-10 AU (≥97-99% of initial mass), and likely to ≥6-10 AU. In the Grand Tack model, Jupiter's initial location (the most likely location for a discontinuity in isotopic composition) is ~3.5 AU; however, this step location has only a 33% likelihood of producing an Earth with the correct Ru-Mo isotopic signature for the most plausible model conditions. Our results give the testable predictions that Mars has zero Ru anomaly and small or zero Mo anomaly, and the Moon has zero Mo anomaly. These predictions are insensitive to wide variations in parameter choices.
内太阳系天体的钌-钼同位素组成可能反映了吸积物质的来源及其随时间的演化,而这两者均受这些天体所经历的吸积过程的控制。在此,我们运用了共116体的类地行星吸积模拟,分别在偏心木星和土星(EJS)、圆形木星和土星(CJS)以及大转向(Grand Tack)这几种情形下运行,以模拟地球、火星和忒伊亚类似物的钌-钼异常。该模型首先应用一个钌-钼同位素组成的初始阶跃函数,其组成反映陨石中的组成,并追踪行星吸积过程中的成分演化。所形成行星的质量加权来源显示,大转向模拟中的径向混合比EJS/CJS模拟中的更多,且后期吸积物质之间的混合比EJS/CJS模拟中吸积主阶段的更高效。我们发现,需要一个广泛的均匀内盘区域才能重现地球观测到的钌-钼组成。EJS/CJS模拟需要内盘中一个延伸至≥3 - 4天文单位(初始质量的≥74 - 98%)的均匀储库来重现地球的组成,而大转向模拟需要一个延伸至≥3 - 10天文单位(初始质量的≥97 - 99%)且可能延伸至≥6 - 10天文单位的均匀储库。在大转向模型中,木星的初始位置(同位素组成最可能出现不连续的位置)约为3.5天文单位;然而,在最合理的模型条件下,这个阶跃位置产生具有正确钌-钼同位素特征的地球的可能性仅为三分之一。我们的结果给出了可检验的预测,即火星的钌异常为零,钼异常小或为零,且月球的钼异常为零。这些预测对参数选择的广泛变化不敏感。