Liu Chen-Wei, Wang Wen-Chung
Department of Psychology, The Education University of Hong Kong, Hong Kong.
Br J Math Stat Psychol. 2017 Nov;70(3):499-524. doi: 10.1111/bmsp.12097. Epub 2017 Apr 8.
Examinee-selected item (ESI) design, in which examinees are required to respond to a fixed number of items in a given set, always yields incomplete data (i.e., when only the selected items are answered, data are missing for the others) that are likely non-ignorable in likelihood inference. Standard item response theory (IRT) models become infeasible when ESI data are missing not at random (MNAR). To solve this problem, the authors propose a two-dimensional IRT model that posits one unidimensional IRT model for observed data and another for nominal selection patterns. The two latent variables are assumed to follow a bivariate normal distribution. In this study, the mirt freeware package was adopted to estimate parameters. The authors conduct an experiment to demonstrate that ESI data are often non-ignorable and to determine how to apply the new model to the data collected. Two follow-up simulation studies are conducted to assess the parameter recovery of the new model and the consequences for parameter estimation of ignoring MNAR data. The results of the two simulation studies indicate good parameter recovery of the new model and poor parameter recovery when non-ignorable missing data were mistakenly treated as ignorable.
考生选择式题目(ESI)设计要求考生回答给定题目集中固定数量的题目,这种设计总会产生不完整的数据(即,当只回答所选题目时,其他题目的数据缺失),而这些数据在似然推断中可能是不可忽略的。当ESI数据存在非随机缺失(MNAR)时,标准的项目反应理论(IRT)模型就变得不可行了。为了解决这个问题,作者提出了一种二维IRT模型,该模型为观测数据设定一个一维IRT模型,为名义选择模式设定另一个一维IRT模型。假设这两个潜在变量服从二元正态分布。在本研究中,采用了mirt免费软件包来估计参数。作者进行了一项实验,以证明ESI数据通常是不可忽略的,并确定如何将新模型应用于所收集的数据。进行了两项后续模拟研究,以评估新模型的参数恢复情况以及将MNAR数据误视为可忽略数据对参数估计的影响。两项模拟研究的结果表明,新模型的参数恢复情况良好,而当不可忽略的缺失数据被错误地视为可忽略时,参数恢复情况较差。