Suppr超能文献

有效回应在线环境下成年心理健康患者的反馈:共创框架。

Responding effectively to adult mental health patient feedback in an online environment: A coproduced framework.

机构信息

Collaboration for the Advancement of Medical Education Research and Assessment, University of Plymouth, Plymouth, UK.

Volunteer Mental Health Patient-Research-Partner, Plymouth, UK.

出版信息

Health Expect. 2018 Oct;21(5):887-898. doi: 10.1111/hex.12682. Epub 2018 Apr 6.

Abstract

BACKGROUND

Responding to online patient feedback is considered integral to patient safety and quality improvement. However, guidance on how to respond effectively is limited, with limited attention paid to patient perceptions and reactions.

OBJECTIVES

To identify factors considered potentially helpful in enhancing response quality; coproduce a best-practice response framework; and quality-appraise existing responses.

DESIGN

A four-stage mixed methodology: (i) systematic search of stories published on Care Opinion about adult mental health services in the South West of England; (ii) collaborative thematic analysis of responses to identify factors potentially helpful in enhancing response quality; (iii) validation of identified factors by a patient-carer group (n = 12) leading to the coproduction of a best-practice response framework; and (iv) quality appraisal of existing responses.

RESULTS

A total of 245 stories were identified, with 183 (74.7%) receiving a response. Twenty-four (9.8%) had been heard but not yet responded to. 1.6% (n = 4/245) may lead to a change. Nineteen factors were considered influential in response quality. These centred around seven subject areas: (i) introductions; (ii) explanations; (iii) speed of response; (iv) thanks and apologies; (v) response content; (vi) signposting; and (vii) response sign-off that were developed into a conceptual framework (the Plymouth, Listen, Learn and Respond framework). Quality appraisal of existing responses highlighted areas for further improvement demonstrating the framework's utility.

CONCLUSION

This study advances existing understanding by providing previously unavailable guidance. It has clear practical and theoretical implications for those looking to improve health-care services, patient safety and quality of care. Further validation of the conceptual framework is encouraged.

摘要

背景

回应在线患者反馈被认为是患者安全和质量改进的重要组成部分。然而,关于如何有效回应的指导有限,对患者的看法和反应关注甚少。

目的

确定增强回应质量的潜在有用因素;共同制定最佳实践回应框架;并对现有回应进行质量评估。

设计

一个四阶段的混合方法:(i)系统搜索在英格兰西南部发布的关于成人心理健康服务的 Care Opinion 上发表的故事;(ii)对回应进行协作主题分析,以确定潜在有助于提高回应质量的因素;(iii)通过患者-护理人员小组(n=12)验证确定的因素,导致共同制定最佳实践回应框架;以及(iv)对现有回应进行质量评估。

结果

共确定了 245 个故事,其中 183 个(74.7%)收到了回应。24 个(9.8%)已收到但尚未回应。1.6%(n=245)可能会导致变化。19 个因素被认为对回应质量有影响。这些因素集中在七个主题领域:(i)介绍;(ii)解释;(iii)回应速度;(iv)感谢和道歉;(v)回应内容;(vi)引导;以及(vii)回应结束,这些因素被开发成一个概念框架(普利茅斯,倾听,学习和回应框架)。对现有回应的质量评估突出了进一步改进的领域,展示了该框架的实用性。

结论

这项研究通过提供以前无法获得的指导,推进了现有知识。对于那些希望改进医疗保健服务、患者安全和护理质量的人来说,具有明确的实践和理论意义。鼓励进一步验证概念框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/217c/6186539/16612b11a8f6/HEX-21-887-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验