Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China.
Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China.
J Mol Cell Cardiol. 2018 May;118:193-207. doi: 10.1016/j.yjmcc.2018.03.017. Epub 2018 Apr 5.
Heat shock transcription factor 1 (HSF1) deficiency aggravates cardiac remodeling under pressure overload. However, the mechanism is still unknown. Here we employed microRNA array analysis of the heart tissue of HSF1-knockout (KO) mice to investigate the potential roles of microRNAs in pressure overload-induced cardiac remodeling under HSF-1 deficiency, and the profiles of 478 microRNAs expressed in the heart tissues of adult HSF1-KO mice were determined. We found that the expression of 5 microRNAs was over 2-fold higher expressed in heart tissues of HSF1-KO mice than in those of wild-type (WT) control mice. Of the overexpressed microRNAs, miR-195a-3p had the highest expression level in HSF1-null endothelial cells (ECs). Induction with miR-195a-3p in ECs significantly suppressed CD31 and VEGF, promoted AngII-induced EC apoptosis, and impaired capillary-like tube formation. In vivo, the upregulation of miR-195a-3p accentuated cardiac hypertrophy, increased the expression of β-MHC and ANP, and compromised systolic function in mice under pressure overload induced by transverse aortic constriction (TAC). By contrast, antagonism of miR-195a-3p had the opposite effect on HSF1-KO mice. Further experiments confirmed that AMPKα2 was the direct target of miR-195a-3p. AMPKα2 overexpression rescued the reduction of eNOS and VEGF, and the impairment of angiogenesis that was induced by miR-195a-3p. In addition, upregulation of AMPKα2 in the myocardium of HSF1-null mice by adenovirus-mediated gene delivery enhanced CD31, eNOS and VEGF, reduced β-MHC and ANP, alleviated pressure overload-mediated cardiac hypertrophy and restored cardiac function. Our findings revealed that the upregulation of miR-195a-3p due to HSF1 deficiency impaired cardiac angiogenesis by regulating AMPKα2/VEGF signaling, which disrupted the coordination between the myocardial blood supply and the adaptive hypertrophic response and accelerated the transition from cardiac hypertrophy to heart failure in response to pressure overload.
热休克转录因子 1(HSF1)缺乏症在压力超负荷下加重心脏重构。然而,其机制尚不清楚。在这里,我们采用微阵列分析 HSF1 敲除(KO)小鼠的心脏组织,研究 HSF-1 缺乏症下压力超负荷诱导的心脏重构中 microRNAs 的潜在作用,并且确定了成年 HSF1-KO 小鼠心脏组织中表达的 478 个 microRNAs 的图谱。我们发现,在 HSF1-KO 小鼠的心脏组织中,有 5 种 microRNAs 的表达量超过了野生型(WT)对照组的 2 倍。在过表达的 microRNAs 中,miR-195a-3p 在 HSF1 缺失的内皮细胞(EC)中表达水平最高。在 EC 中诱导 miR-195a-3p 显著抑制 CD31 和 VEGF,促进 AngII 诱导的 EC 凋亡,并损害毛细血管样管形成。在体内,miR-195a-3p 的上调加重了压力超负荷诱导的心脏肥厚,增加了β-MHC 和 ANP 的表达,并损害了横主动脉缩窄(TAC)后小鼠的收缩功能。相反,miR-195a-3p 的拮抗作用对 HSF1-KO 小鼠则相反。进一步的实验证实,AMPKα2 是 miR-195a-3p 的直接靶标。AMPKα2 过表达挽救了 miR-195a-3p 诱导的 eNOS 和 VEGF 的减少和血管生成的损害。此外,腺病毒介导的基因传递增强了 HSF1 缺失小鼠心肌中的 AMPKα2,增加了 CD31、eNOS 和 VEGF,减少了β-MHC 和 ANP,减轻了压力超负荷介导的心脏肥厚并恢复了心脏功能。我们的研究结果表明,由于 HSF1 缺乏导致 miR-195a-3p 的上调通过调节 AMPKα2/VEGF 信号通路损害心脏血管生成,破坏了心肌血液供应与适应性肥大反应之间的协调,并加速了心脏从肥大向心力衰竭的转变,以应对压力超负荷。