Suppr超能文献

利用质子动力:线粒体解偶联和活性氧物质。

Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species.

机构信息

Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.

Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.

出版信息

J Mol Biol. 2018 Oct 19;430(21):3873-3891. doi: 10.1016/j.jmb.2018.03.025. Epub 2018 Apr 4.

Abstract

Mitochondrial respiration results in an electrochemical proton gradient, or protonmotive force (pmf), across the mitochondrial inner membrane. The pmf is a form of potential energy consisting of charge (∆ψ) and chemical (∆pH) components, that together drive ATP production. In a process called uncoupling, proton leak into the mitochondrial matrix independent of ATP production dissipates the pmf and energy is lost as heat. Other events can directly dissipate the pmf independent of ATP production as well, such as chemical exposure or mechanisms involving regulated mitochondrial membrane electrolyte transport. Uncoupling has defined roles in metabolic plasticity and can be linked through signal transduction to physiologic events. In the latter case, the pmf impacts mitochondrial reactive oxygen species (ROS) production. Although capable of molecular damage, ROS also have signaling properties that depend on the timing, location, and quantity of their production. In this review, we provide a general overview of mitochondrial ROS production, mechanisms of uncoupling, and how these work in tandem to affect physiology and pathologies, including obesity, cardiovascular disease, and immunity. Overall, we highlight that isolated bioenergetic models-mitochondria and cells-only partially recapitulate the complex link between the pmf and ROS signaling that occurs in vivo.

摘要

线粒体呼吸导致跨线粒体内膜的电化学质子梯度或质子动力势 (pmf)。pmf 是一种势能,由电荷 (∆ψ) 和化学 (∆pH) 组成,共同驱动 ATP 的产生。在称为解耦的过程中,质子独立于 ATP 产生而渗漏到线粒体基质中,消耗 pmf,能量以热量的形式损失。其他事件也可以独立于 ATP 产生直接耗散 pmf,例如化学暴露或涉及调节线粒体膜电解质转运的机制。解耦在代谢可塑性中具有明确的作用,并可以通过信号转导与生理事件联系起来。在后一种情况下,pmf 会影响线粒体活性氧 (ROS) 的产生。尽管 ROS 有能力造成分子损伤,但它们也具有信号特性,这取决于其产生的时间、位置和数量。在这篇综述中,我们提供了线粒体 ROS 产生、解耦机制的概述,以及它们如何协同作用影响生理和病理,包括肥胖、心血管疾病和免疫。总的来说,我们强调,孤立的生物能学模型——线粒体和细胞——仅部分再现了体内发生的 pmf 和 ROS 信号之间的复杂联系。

相似文献

2
Mitochondrial uncoupling, ROS generation and cardioprotection.线粒体解偶联、ROS 生成与心脏保护。
Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):940-950. doi: 10.1016/j.bbabio.2018.05.019. Epub 2018 May 31.
3
Mitochondrial H(+) leak and ROS generation: an odd couple.线粒体氢离子泄漏与活性氧生成:一对奇特的组合。
Free Radic Biol Med. 2005 Jan 1;38(1):12-23. doi: 10.1016/j.freeradbiomed.2004.10.016.
5
Mitochondrial redox regulation and myocardial ischemia-reperfusion injury.线粒体氧化还原调节与心肌缺血再灌注损伤。
Am J Physiol Cell Physiol. 2022 Jan 1;322(1):C12-C23. doi: 10.1152/ajpcell.00131.2021. Epub 2021 Nov 10.

引用本文的文献

10
Electron transfer in biological systems.生物系统中的电子转移。
J Biol Inorg Chem. 2024 Dec;29(7-8):641-683. doi: 10.1007/s00775-024-02076-8. Epub 2024 Oct 18.

本文引用的文献

5
Small Molecule Mitochondrial Uncouplers and Their Therapeutic Potential.小分子线粒体解偶联剂及其治疗潜力。
J Med Chem. 2018 Jun 14;61(11):4641-4655. doi: 10.1021/acs.jmedchem.7b01182. Epub 2017 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验