Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
J Mol Biol. 2018 Oct 19;430(21):3873-3891. doi: 10.1016/j.jmb.2018.03.025. Epub 2018 Apr 4.
Mitochondrial respiration results in an electrochemical proton gradient, or protonmotive force (pmf), across the mitochondrial inner membrane. The pmf is a form of potential energy consisting of charge (∆ψ) and chemical (∆pH) components, that together drive ATP production. In a process called uncoupling, proton leak into the mitochondrial matrix independent of ATP production dissipates the pmf and energy is lost as heat. Other events can directly dissipate the pmf independent of ATP production as well, such as chemical exposure or mechanisms involving regulated mitochondrial membrane electrolyte transport. Uncoupling has defined roles in metabolic plasticity and can be linked through signal transduction to physiologic events. In the latter case, the pmf impacts mitochondrial reactive oxygen species (ROS) production. Although capable of molecular damage, ROS also have signaling properties that depend on the timing, location, and quantity of their production. In this review, we provide a general overview of mitochondrial ROS production, mechanisms of uncoupling, and how these work in tandem to affect physiology and pathologies, including obesity, cardiovascular disease, and immunity. Overall, we highlight that isolated bioenergetic models-mitochondria and cells-only partially recapitulate the complex link between the pmf and ROS signaling that occurs in vivo.
线粒体呼吸导致跨线粒体内膜的电化学质子梯度或质子动力势 (pmf)。pmf 是一种势能,由电荷 (∆ψ) 和化学 (∆pH) 组成,共同驱动 ATP 的产生。在称为解耦的过程中,质子独立于 ATP 产生而渗漏到线粒体基质中,消耗 pmf,能量以热量的形式损失。其他事件也可以独立于 ATP 产生直接耗散 pmf,例如化学暴露或涉及调节线粒体膜电解质转运的机制。解耦在代谢可塑性中具有明确的作用,并可以通过信号转导与生理事件联系起来。在后一种情况下,pmf 会影响线粒体活性氧 (ROS) 的产生。尽管 ROS 有能力造成分子损伤,但它们也具有信号特性,这取决于其产生的时间、位置和数量。在这篇综述中,我们提供了线粒体 ROS 产生、解耦机制的概述,以及它们如何协同作用影响生理和病理,包括肥胖、心血管疾病和免疫。总的来说,我们强调,孤立的生物能学模型——线粒体和细胞——仅部分再现了体内发生的 pmf 和 ROS 信号之间的复杂联系。