Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China; Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China.
Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China.
Acta Biomater. 2018 May;72:182-195. doi: 10.1016/j.actbio.2018.03.052. Epub 2018 Apr 6.
Cell sheet techniques offer a promising future for myocardial infarction (MI) therapy; however, insufficient nutrition supply remains the major limitation in maintaining stem cell bioactivity in vitro. In order to enhance cell sheet mechanical strength and bioactivity, a decellularized porcine pericardium (DPP) scaffold was prepared by the phospholipase A2 method, and aspartic acid was used as a spacer arm to improve the vascular endothelial growth factor crosslink efficiency on the DPP scaffold. Based on this scaffold, multilayered bone marrow mesenchymal stem cell sheets were rapidly constructed, using RAD16-I peptide hydrogel as a temporary 3D scaffold, and cell sheets were cultured in either the 3D-dynamic system (DCcs) or the traditional static condition (SCcs). The multilayered structure, stem cell bioactivity, and ultrastructure of DCcs and SCcs were assessed. The DCcs exhibited lower apoptosis, lower differentiation, and an improved paracrine effect after a 48 h culture in vitro compared to the SCcs. Four groups were set to evaluate the cell sheet effect in rat MI model: sham group, MI control group, DCcs group, and SCcs group. The DCcs group improved cardiac function and decreased the infarcted area compared to the MI control group, while no significant improvements were observed in the SCcs group. Improved cell survival, angiogenesis, and Sca-1 cell and c-kit cell amounts were observed in the DCcs group. In conclusion, the DCcs maintained higher stem cell bioactivity by using the 3D-dynamic system to provide sufficient nutrition, and transplanting DCcs significantly improved the cardiac function and angiogenesis.
This study provides an efficient method to prepare vascular endothelial growth factor covalent decellularized pericardium scaffold with aspartic acid, and a multilayered bone marrow mesenchymal stem cell (BMSC) sheet is constructed on it using a 3D-dynamic system. The dynamic nutrition supply showed a significant benefit on BMSC bioactivity in vitro, including decreasing cell apoptosis, reducing stem cell differentiation, and improving growth factor secretion. These favorable bioactivity improved BMSC survival, angiogenesis, and cardiac function of the infarcted myocardium. The study highlights the importance of dynamic nutrition supply on maintaining stem cell bioactivity within cell sheet, and it stresses the necessity and significance of setting a standard for assessing cell sheet products before transplantation in the future application.
细胞片技术为心肌梗死(MI)治疗提供了广阔的前景;然而,体外维持干细胞生物活性仍然存在营养供应不足的主要限制。为了提高细胞片的机械强度和生物活性,采用磷脂酶 A2 法制备脱细胞猪心包(DPP)支架,并使用天冬氨酸作为间隔臂以提高血管内皮生长因子在 DPP 支架上的交联效率。在此支架的基础上,使用 RAD16-I 肽水凝胶作为临时 3D 支架快速构建了多层骨髓间充质干细胞片,并在 3D 动态系统(DCcs)或传统静态条件(SCcs)下培养细胞片。评估了 DCcs 和 SCcs 的多层结构、干细胞生物活性和超微结构。与 SCcs 相比,体外培养 48 小时后,DCcs 显示出更低的细胞凋亡率、更低的分化率和改善的旁分泌作用。共设置 4 组评估细胞片在大鼠 MI 模型中的作用:假手术组、MI 对照组、DCcs 组和 SCcs 组。与 MI 对照组相比,DCcs 组改善了心功能并减少了梗死面积,而 SCcs 组无明显改善。DCcs 组观察到细胞存活率提高、血管生成增加以及 Sca-1 细胞和 c-kit 细胞数量增加。总之,通过使用 3D 动态系统提供充足的营养,DCcs 维持了更高的干细胞生物活性,并且移植 DCcs 显著改善了心脏功能和血管生成。
本研究提供了一种有效的方法来制备血管内皮生长因子共价脱细胞化的心包膜支架,并用天冬氨酸进行修饰,并使用 3D 动态系统在其上构建了多层骨髓间充质干细胞(BMSC)片。动态营养供应在体外显著改善了 BMSC 的生物活性,包括降低细胞凋亡、减少干细胞分化和改善生长因子分泌。这些有利的生物活性提高了 BMSC 的存活率、梗死心肌的血管生成和心脏功能。该研究强调了动态营养供应对维持细胞片内干细胞生物活性的重要性,并强调了在未来的应用中,在移植前为细胞片产品设定评估标准的必要性和重要性。