Suppr超能文献

线粒体转录起始的结构基础

Structural Basis of Mitochondrial Transcription Initiation.

作者信息

Hillen Hauke S, Morozov Yaroslav I, Sarfallah Azadeh, Temiakov Dmitry, Cramer Patrick

机构信息

Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Dr., Stratford, NJ 08084, USA.

出版信息

Cell. 2017 Nov 16;171(5):1072-1081.e10. doi: 10.1016/j.cell.2017.10.036.

Abstract

Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria.

摘要

人类线粒体中的转录由一种单亚基、因子依赖性RNA聚合酶(mtRNAP)驱动。尽管它在线粒体基因组的表达和复制中都起着关键作用,但mtRNAP的转录起始仍知之甚少。在这里,我们报告了在轻链和重链启动子上组装的人类线粒体转录起始复合物的晶体结构。这些结构揭示了转录因子TFAM和TFB2M如何协助mtRNAP实现依赖启动子的起始。TFAM将mtRNAP的N端区域拴系,以将聚合酶招募到启动子上,而TFB2M则诱导mtRNAP的结构变化,以实现启动子开放和DNA非模板链的捕获。结构比较表明,线粒体中的起始机制与在深入研究的核、细菌或噬菌体转录系统中的不同,但在拓扑和概念层面上存在相似之处。这些结果为研究线粒体中基因表达和DNA复制的调控提供了一个框架。

相似文献

1
Structural Basis of Mitochondrial Transcription Initiation.
Cell. 2017 Nov 16;171(5):1072-1081.e10. doi: 10.1016/j.cell.2017.10.036.
2
Organization of the human mitochondrial transcription initiation complex.
Nucleic Acids Res. 2014 Apr;42(6):4100-12. doi: 10.1093/nar/gkt1360. Epub 2014 Jan 9.
3
Human Mitochondrial Transcription Initiation Complexes Have Similar Topology on the Light and Heavy Strand Promoters.
J Biol Chem. 2016 Jun 24;291(26):13432-5. doi: 10.1074/jbc.C116.727966. Epub 2016 May 13.
4
Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation.
Nucleic Acids Res. 2017 Jan 25;45(2):861-874. doi: 10.1093/nar/gkw1157. Epub 2016 Nov 29.
5
Structure of human mitochondrial RNA polymerase.
Nature. 2011 Sep 25;478(7368):269-73. doi: 10.1038/nature10435.
6
A novel intermediate in transcription initiation by human mitochondrial RNA polymerase.
Nucleic Acids Res. 2014 Apr;42(6):3884-93. doi: 10.1093/nar/gkt1356. Epub 2014 Jan 6.
7
Cryo-EM Structures Reveal Transcription Initiation Steps by Yeast Mitochondrial RNA Polymerase.
Mol Cell. 2021 Jan 21;81(2):268-280.e5. doi: 10.1016/j.molcel.2020.11.016. Epub 2020 Dec 4.
8
Identification of multiple rate-limiting steps during the human mitochondrial transcription cycle in vitro.
J Biol Chem. 2010 May 21;285(21):16387-402. doi: 10.1074/jbc.M109.092676. Epub 2010 Mar 29.
9
Phosphorylation of mitochondrial transcription factor B2 controls mitochondrial DNA binding and transcription.
Biochem Biophys Res Commun. 2020 Jul 30;528(3):580-585. doi: 10.1016/j.bbrc.2020.05.141. Epub 2020 Jun 3.
10
Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase.
Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):930-8. doi: 10.1016/j.bbagrm.2012.02.003. Epub 2012 Feb 14.

引用本文的文献

3
Guanine quadruplexes mediate mitochondrial RNA polymerase pausing.
BMC Biol. 2025 May 13;23(1):129. doi: 10.1186/s12915-025-02229-4.
5
Reply to: An alternative model for maternal mtDNA inheritance.
Nat Genet. 2025 May;57(5):1105-1106. doi: 10.1038/s41588-025-02150-0. Epub 2025 Mar 20.
7
7S RNA is surveilling mitochondrial DNA transcription.
Life Metab. 2022 Jun 16;1(1):8-9. doi: 10.1093/lifemeta/loac008. eCollection 2022 Aug.
8
Epigenetic Threads of Neurodegeneration: TFAM's Intricate Role in Mitochondrial Transcription.
CNS Neurol Disord Drug Targets. 2025;24(6):422-433. doi: 10.2174/0118715273334342250108043032.
10
Human mitochondrial RNA polymerase structures reveal transcription start-site and slippage mechanism.
bioRxiv. 2024 Dec 2:2024.12.02.626445. doi: 10.1101/2024.12.02.626445.

本文引用的文献

1
Mechanism of Transcription Anti-termination in Human Mitochondria.
Cell. 2017 Nov 16;171(5):1082-1093.e13. doi: 10.1016/j.cell.2017.09.035. Epub 2017 Oct 12.
3
Structural insights into transcription initiation by yeast RNA polymerase I.
EMBO J. 2017 Sep 15;36(18):2698-2709. doi: 10.15252/embj.201796958. Epub 2017 Jul 24.
5
Structural Basis of RNA Polymerase I Transcription Initiation.
Cell. 2017 Mar 23;169(1):120-131.e22. doi: 10.1016/j.cell.2017.03.003.
6
Human Mitochondrial Transcription Factor B2 Is Required for Promoter Melting during Initiation of Transcription.
J Biol Chem. 2017 Feb 17;292(7):2637-2645. doi: 10.1074/jbc.M116.751008. Epub 2016 Dec 27.
7
Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation.
Nucleic Acids Res. 2017 Jan 25;45(2):861-874. doi: 10.1093/nar/gkw1157. Epub 2016 Nov 29.
8
Human Mitochondrial Transcription Initiation Complexes Have Similar Topology on the Light and Heavy Strand Promoters.
J Biol Chem. 2016 Jun 24;291(26):13432-5. doi: 10.1074/jbc.C116.727966. Epub 2016 May 13.
9
Maintenance and Expression of Mammalian Mitochondrial DNA.
Annu Rev Biochem. 2016 Jun 2;85:133-60. doi: 10.1146/annurev-biochem-060815-014402. Epub 2016 Mar 24.
10
A model for transcription initiation in human mitochondria.
Nucleic Acids Res. 2015 Apr 20;43(7):3726-35. doi: 10.1093/nar/gkv235. Epub 2015 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验