Ogunleke Abiodun, Recur Benoit, Balacey Hugo, Chen Hsiang-Hsin, Delugin Maylis, Hwu Yeukuang, Javerzat Sophie, Petibois Cyril
University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . Email:
Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China.
Chem Sci. 2017 Oct 17;9(1):189-198. doi: 10.1039/c7sc03306k. eCollection 2018 Jan 7.
Three-dimensional (3D) histology is the next frontier for modern anatomo-pathology. Characterizing abnormal parameters in a tissue is essential to understand the rationale of pathology development. However, there is no analytical technique, or histological, that is able to discover such abnormal features and provide a 3D distribution at microscopic resolution. Here, we introduce a unique high-throughput infrared (IR) microscopy method that combines automated image correction and subsequent spectral data analysis for 3D-IR image reconstruction. We performed spectral analysis of a complete organ for a small animal model, a mouse brain with an implanted glioma tumor. The 3D-IR image is reconstructed from 370 consecutive tissue sections and corrected using the X-ray tomogram of the organ for an accurate quantitative analysis of the chemical content. A 3D matrix of 89 × 10 IR spectra is generated, allowing us to separate the tumor mass from healthy brain tissues based on various anatomical, chemical, and metabolic parameters. We demonstrate that quantitative metabolic parameters can be extracted from the IR spectra for the characterization of the brain tumor metabolism (assessing the Warburg effect in tumors). Our method can be further exploited by searching for the whole spectral profile, discriminating tumor healthy tissue in a non-supervised manner, which we call 'spectromics'.
三维(3D)组织学是现代解剖病理学的下一个前沿领域。表征组织中的异常参数对于理解病理学发展的原理至关重要。然而,目前尚无能够发现此类异常特征并在微观分辨率下提供三维分布的分析技术或组织学方法。在此,我们介绍一种独特的高通量红外(IR)显微镜方法,该方法结合了自动图像校正和后续光谱数据分析以进行三维红外图像重建。我们对一种小动物模型的完整器官,即植入了胶质瘤肿瘤的小鼠大脑进行了光谱分析。三维红外图像由370个连续的组织切片重建而成,并使用该器官的X射线断层图进行校正,以对化学含量进行准确的定量分析。生成了一个89×10红外光谱的三维矩阵,使我们能够根据各种解剖学、化学和代谢参数将肿瘤块与健康脑组织区分开来。我们证明,可以从红外光谱中提取定量代谢参数以表征脑肿瘤代谢(评估肿瘤中的瓦伯格效应)。通过搜索整个光谱图谱,以无监督方式区分肿瘤与健康组织,我们的方法可得到进一步利用,我们将其称为“光谱组学”。