Suppr超能文献

RSTensorFlow:适用于普通安卓设备深度学习的支持GPU的TensorFlow。

RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on Commodity Android Devices.

作者信息

Alzantot Moustafa, Wang Yingnan, Ren Zhengshuang, Srivastava Mani B

机构信息

University of California, Los Angeles, Los Angeles, CA 90095.

出版信息

MobiSys. 2017 Jun;2017:7-12. doi: 10.1145/3089801.3089805.

Abstract

Mobile devices have become an essential part of our daily lives. By virtue of both their increasing computing power and the recent progress made in AI, mobile devices evolved to act as intelligent assistants in many tasks rather than a mere way of making phone calls. However, popular and commonly used tools and frameworks for machine intelligence are still lacking the ability to make proper use of the available heterogeneous computing resources on mobile devices. In this paper, we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources available on commodity android devices while running deep learning models. We leveraged the heterogeneous computing framework RenderScript to accelerate the execution of deep learning models on commodity Android devices. Our system is implemented as an extension to the popular open-source framework TensorFlow. By integrating our acceleration framework tightly into TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous computing resources on mobile devices without the need of any extra tools. We evaluate our system on different android phones models to study the trade-offs of running different neural network operations on the GPU. We also compare the performance of running different models architectures such as convolutional and recurrent neural networks on CPU only vs using heterogeneous computing resources. Our result shows that although GPUs on the phones are capable of offering substantial performance gain in matrix multiplication on mobile devices. Therefore, models that involve multiplication of large matrices can run much faster (approx. in our experiments) due to GPU support.

摘要

移动设备已成为我们日常生活中不可或缺的一部分。凭借其不断增强的计算能力以及人工智能领域的最新进展,移动设备已演变成在许多任务中充当智能助手,而不仅仅是一种打电话的方式。然而,现有的流行且常用的机器智能工具和框架仍缺乏有效利用移动设备上可用的异构计算资源的能力。在本文中,我们研究了在运行深度学习模型时利用商用安卓设备上的异构(CPU和GPU)计算资源的好处。我们利用异构计算框架RenderScript来加速深度学习模型在商用安卓设备上的执行。我们的系统是作为流行的开源框架TensorFlow的扩展来实现的。通过将我们的加速框架紧密集成到TensorFlow中,机器学习工程师现在可以轻松利用移动设备上的异构计算资源,而无需任何额外工具。我们在不同的安卓手机型号上评估我们的系统,以研究在GPU上运行不同神经网络操作的权衡。我们还比较了仅在CPU上运行不同模型架构(如卷积神经网络和循环神经网络)与使用异构计算资源时的性能。我们的结果表明,尽管手机上的GPU能够在移动设备的矩阵乘法中提供显著的性能提升。因此,由于GPU的支持,涉及大矩阵乘法的模型可以运行得快得多(在我们的实验中约为 )。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验