Suppr超能文献

BindsNET:一个面向机器学习的Python脉冲神经网络库。

BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python.

作者信息

Hazan Hananel, Saunders Daniel J, Khan Hassaan, Patel Devdhar, Sanghavi Darpan T, Siegelmann Hava T, Kozma Robert

机构信息

Biologically Inspired Neural and Dynamical Systems Laboratory, College of Computer and Information Sciences, University of Massachusetts Amherst, Amherst, MA, United States.

出版信息

Front Neuroinform. 2018 Dec 12;12:89. doi: 10.3389/fninf.2018.00089. eCollection 2018.

Abstract

The development of spiking neural network simulation software is a critical component enabling the modeling of neural systems and the development of biologically inspired algorithms. Existing software frameworks support a wide range of neural functionality, software abstraction levels, and hardware devices, yet are typically not suitable for rapid prototyping or application to problems in the domain of machine learning. In this paper, we describe a new Python package for the simulation of spiking neural networks, specifically geared toward machine learning and reinforcement learning. Our software, called BindsNET, enables rapid building and simulation of spiking networks and features user-friendly, concise syntax. BindsNET is built on the PyTorch deep neural networks library, facilitating the implementation of spiking neural networks on fast CPU and GPU computational platforms. Moreover, the BindsNET framework can be adjusted to utilize other existing computing and hardware backends; e.g., TensorFlow and SpiNNaker. We provide an interface with the OpenAI gym library, allowing for training and evaluation of spiking networks on reinforcement learning environments. We argue that this package facilitates the use of spiking networks for large-scale machine learning problems and show some simple examples by using BindsNET in practice.

摘要

脉冲神经网络模拟软件的开发是实现神经系统建模和受生物启发算法开发的关键组成部分。现有的软件框架支持广泛的神经功能、软件抽象级别和硬件设备,但通常不适合快速原型制作或应用于机器学习领域的问题。在本文中,我们描述了一个用于模拟脉冲神经网络的新Python包,特别适用于机器学习和强化学习。我们的软件名为BindsNET,能够快速构建和模拟脉冲网络,并具有用户友好、简洁的语法。BindsNET基于PyTorch深度神经网络库构建,便于在快速CPU和GPU计算平台上实现脉冲神经网络。此外,BindsNET框架可以进行调整以利用其他现有的计算和硬件后端,例如TensorFlow和SpiNNaker。我们提供了与OpenAI gym库的接口,允许在强化学习环境中训练和评估脉冲网络。我们认为这个包便于将脉冲网络用于大规模机器学习问题,并通过实际使用BindsNET展示了一些简单示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0147/6315182/018c3ca2926c/fninf-12-00089-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验