Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan.
Sensors (Basel). 2019 Aug 5;19(15):3434. doi: 10.3390/s19153434.
Labeling activity data is a central part of the design and evaluation of human activity recognition systems. The performance of the systems greatly depends on the quantity and "quality" of annotations; therefore, it is inevitable to rely on users and to keep them motivated to provide activity labels. While mobile and embedded devices are increasingly using deep learning models to infer user context, we propose to exploit on-device deep learning inference using a long short-term memory (LSTM)-based method to alleviate the labeling effort and ground truth data collection in activity recognition systems using smartphone sensors. The novel idea behind this is that estimated activities are used as feedback for motivating users to collect accurate activity labels. To enable us to perform evaluations, we conduct the experiments with two conditional methods. We compare the proposed method showing estimated activities using on-device deep learning inference with the traditional method showing sentences without estimated activities through smartphone notifications. By evaluating with the dataset gathered, the results show our proposed method has improvements in both data quality (i.e., the performance of a classification model) and data quantity (i.e., the number of data collected) that reflect our method could improve activity data collection, which can enhance human activity recognition systems. We discuss the results, limitations, challenges, and implications for on-device deep learning inference that support activity data collection. Also, we publish the preliminary dataset collected to the research community for activity recognition.
标注活动数据是设计和评估人体活动识别系统的核心部分。系统的性能在很大程度上取决于标注的数量和“质量”;因此,不可避免地需要依赖用户,并保持他们的积极性,以提供活动标签。虽然移动和嵌入式设备越来越多地使用深度学习模型来推断用户上下文,但我们建议利用设备上的深度学习推断,使用基于长短时记忆(LSTM)的方法来减轻使用智能手机传感器的活动识别系统中的标注工作和真实数据收集。这一想法的新颖之处在于,估计的活动被用作激励用户收集准确活动标签的反馈。为了使我们能够进行评估,我们使用两种有条件的方法进行实验。我们比较了使用设备上的深度学习推断来展示估计活动的建议方法与通过智能手机通知展示没有估计活动的句子的传统方法。通过对收集到的数据集进行评估,结果表明,我们提出的方法在数据质量(即分类模型的性能)和数据数量(即收集的数据数量)方面都有改进,这反映了我们的方法可以改进活动数据收集,从而增强人体活动识别系统。我们讨论了支持活动数据收集的设备上的深度学习推断的结果、限制、挑战和影响。此外,我们还将收集到的初步数据集发布到研究社区,以供活动识别使用。