Suppr超能文献

基于临床概念的深度上下文嵌入的再入院预测。

Readmission prediction via deep contextual embedding of clinical concepts.

机构信息

AI for Healthcare, IBM Research, Cambridge, MA, United States of America.

IBM T.J. Watson Research Center, Yorktown Heights, NY, United States of America.

出版信息

PLoS One. 2018 Apr 9;13(4):e0195024. doi: 10.1371/journal.pone.0195024. eCollection 2018.

Abstract

OBJECTIVE

Hospital readmission costs a lot of money every year. Many hospital readmissions are avoidable, and excessive hospital readmissions could also be harmful to the patients. Accurate prediction of hospital readmission can effectively help reduce the readmission risk. However, the complex relationship between readmission and potential risk factors makes readmission prediction a difficult task. The main goal of this paper is to explore deep learning models to distill such complex relationships and make accurate predictions.

MATERIALS AND METHODS

We propose CONTENT, a deep model that predicts hospital readmissions via learning interpretable patient representations by capturing both local and global contexts from patient Electronic Health Records (EHR) through a hybrid Topic Recurrent Neural Network (TopicRNN) model. The experiment was conducted using the EHR of a real world Congestive Heart Failure (CHF) cohort of 5,393 patients.

RESULTS

The proposed model outperforms state-of-the-art methods in readmission prediction (e.g. 0.6103 ± 0.0130 vs. second best 0.5998 ± 0.0124 in terms of ROC-AUC). The derived patient representations were further utilized for patient phenotyping. The learned phenotypes provide more precise understanding of readmission risks.

DISCUSSION

Embedding both local and global context in patient representation not only improves prediction performance, but also brings interpretable insights of understanding readmission risks for heterogeneous chronic clinical conditions.

CONCLUSION

This is the first of its kind model that integrates the power of both conventional deep neural network and the probabilistic generative models for highly interpretable deep patient representation learning. Experimental results and case studies demonstrate the improved performance and interpretability of the model.

摘要

目的

医院的再入院费用每年都很高。许多医院的再入院是可以避免的,而且过多的医院再入院也可能对患者造成伤害。准确预测再入院可以有效地帮助降低再入院风险。然而,再入院与潜在风险因素之间复杂的关系使得再入院预测成为一项困难的任务。本文的主要目标是探索深度学习模型,以提炼这种复杂的关系并进行准确的预测。

材料和方法

我们提出了 CONTENT,这是一种通过学习从患者电子健康记录(EHR)中捕获局部和全局上下文的可解释患者表示的深度学习模型,通过混合主题递归神经网络(TopicRNN)模型实现。该实验使用了 5393 名充血性心力衰竭(CHF)患者的真实世界 EHR 进行。

结果

所提出的模型在再入院预测方面优于最先进的方法(例如,ROC-AUC 方面为 0.6103 ± 0.0130,而第二好的为 0.5998 ± 0.0124)。进一步利用所得到的患者表示来进行患者表型分析。学习到的表型提供了对再入院风险更精确的理解。

讨论

在患者表示中嵌入局部和全局上下文不仅提高了预测性能,而且还提供了对异质慢性临床状况的再入院风险的可解释见解。

结论

这是首例将传统深度学习网络的功能与概率生成模型相结合的模型,用于高度可解释的深度患者表示学习。实验结果和案例研究证明了该模型的性能和可解释性得到了提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d549/5890980/e4a88058a1c2/pone.0195024.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验