Suppr超能文献

通过模拟退火预测的驱动蛋白运动结构域的核苷酸依赖性运动。

Nucleotide-dependent movements of the kinesin motor domain predicted by simulated annealing.

作者信息

Wriggers W, Schulten K

机构信息

Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA.

出版信息

Biophys J. 1998 Aug;75(2):646-61. doi: 10.1016/S0006-3495(98)77555-1.

Abstract

The structure of an ATP-bound kinesin motor domain is predicted and conformational differences relative to the known ADP-bound form of the protein are identified. The differences should be attributed to force-producing ATP hydrolysis. Candidate ATP-kinesin structures were obtained by simulated annealing, by placement of the ATP gamma-phosphate in the crystal structure of ADP-kinesin, and by interatomic distance constraints. The choice of such constraints was based on mutagenesis experiments, which identified Gly-234 as one of the gamma-phosphate sensing residues, as well as on structural comparison of kinesin with the homologous nonclaret disjunctional (ncd) motor and with G-proteins. The prediction of nucleotide-dependent conformational differences reveals an allosteric coupling between the nucleotide pocket and the microtubule binding site of kinesin. Interactions of ATP with Gly-234 and Ser-202 trigger structural changes in the motor domain, the nucleotide acting as an allosteric modifier of kinesin's microtubule-binding state. We suggest that in the presence of ATP kinesin's putative microtubule binding regions L8, L12, L11, alpha4, alpha5, and alpha6 form a face complementary in shape to the microtubule surface; in the presence of ADP, the microtubule binding face adopts a more convex shape relative to the ATP-bound form, reducing kinesin's affinity to the microtubule.

摘要

预测了结合ATP的驱动蛋白运动结构域的结构,并确定了相对于已知的结合ADP形式的蛋白质的构象差异。这些差异应归因于产生力的ATP水解。通过模拟退火、将ATPγ-磷酸基团置于ADP-驱动蛋白的晶体结构中以及原子间距离限制,获得了候选的ATP-驱动蛋白结构。这些限制条件的选择基于诱变实验,该实验确定甘氨酸-234是γ-磷酸基团感应残基之一,同时也基于驱动蛋白与同源的非红葡萄酒不分离(ncd)运动蛋白以及G蛋白的结构比较。对核苷酸依赖性构象差异的预测揭示了核苷酸口袋与驱动蛋白微管结合位点之间的变构偶联。ATP与甘氨酸-234和丝氨酸-202的相互作用触发了运动结构域的结构变化,核苷酸作为驱动蛋白微管结合状态的变构调节剂。我们认为,在ATP存在的情况下,驱动蛋白假定的微管结合区域L8、L12、L11、α4、α5和α6形成一个与微管表面形状互补的面;在ADP存在的情况下,相对于结合ATP的形式,微管结合面呈现出更凸的形状,降低了驱动蛋白对微管的亲和力。

相似文献

1
Nucleotide-dependent movements of the kinesin motor domain predicted by simulated annealing.
Biophys J. 1998 Aug;75(2):646-61. doi: 10.1016/S0006-3495(98)77555-1.
3
Probing the structural and energetic basis of kinesin-microtubule binding using computational alanine-scanning mutagenesis.
Biochemistry. 2011 Oct 11;50(40):8645-55. doi: 10.1021/bi2008257. Epub 2011 Sep 19.
4
Allosteric control of kinesin's motor domain by tubulin: a molecular dynamics study.
Phys Chem Chem Phys. 2014 Apr 7;16(13):6189-98. doi: 10.1039/c3cp53367k.
5
KIF1A alternately uses two loops to bind microtubules.
Science. 2004 Jul 30;305(5684):678-83. doi: 10.1126/science.1096621.
6
Closing of the nucleotide pocket of kinesin-family motors upon binding to microtubules.
Science. 2003 May 2;300(5620):798-801. doi: 10.1126/science.1082374.
7
Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6359-64. doi: 10.1073/pnas.1505531112. Epub 2015 May 4.
8
A look into kinesin's powerhouse.
FEBS Lett. 2001 Nov 23;508(3):291-4. doi: 10.1016/s0014-5793(01)03064-2.
9
Kinesin's IAK tail domain inhibits initial microtubule-stimulated ADP release.
Nat Cell Biol. 2000 May;2(5):257-60. doi: 10.1038/35010525.
10
The beginning of kinesin's force-generating cycle visualized at 9-A resolution.
J Cell Biol. 2007 May 7;177(3):377-85. doi: 10.1083/jcb.200612090. Epub 2007 Apr 30.

引用本文的文献

2
Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation.
Biophys J. 2015 Dec 15;109(12):2614-2624. doi: 10.1016/j.bpj.2015.10.038.
3
Mapping the structural and dynamical features of kinesin motor domains.
PLoS Comput Biol. 2013;9(11):e1003329. doi: 10.1371/journal.pcbi.1003329. Epub 2013 Nov 7.
4
Analysis of the interaction of the Eg5 Loop5 with the nucleotide site.
J Theor Biol. 2011 Nov 21;289:107-15. doi: 10.1016/j.jtbi.2011.08.017. Epub 2011 Aug 23.
5
Myosin dynamics on the millisecond time scale.
Biophys Chem. 2007 Dec;131(1-3):15-28. doi: 10.1016/j.bpc.2007.08.008. Epub 2007 Sep 11.
6
Probing the local dynamics of nucleotide-binding pocket coupled to the global dynamics: myosin versus kinesin.
Biophys J. 2005 Jul;89(1):167-78. doi: 10.1529/biophysj.105.063305. Epub 2005 May 6.
7
Microtubule-kinesin interface mutants reveal a site critical for communication.
Biochemistry. 2004 Mar 16;43(10):2792-803. doi: 10.1021/bi035830e.
8
A comparative study of motor-protein motions by using a simple elastic-network model.
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13253-8. doi: 10.1073/pnas.2235686100. Epub 2003 Oct 29.
9
A kinesin switch I arginine to lysine mutation rescues microtubule function.
J Biol Chem. 2003 Oct 3;278(40):39059-67. doi: 10.1074/jbc.M304250200. Epub 2003 Jul 14.
10
Molecular dynamics simulations of the NGF-TrkA domain 5 complex and comparison with biological data.
Biophys J. 2003 Apr;84(4):2282-92. doi: 10.1016/S0006-3495(03)75034-6.

本文引用的文献

1
Organelle transport along microtubules - the role of KIFs.
Trends Cell Biol. 1996 Apr;6(4):135-41. doi: 10.1016/0962-8924(96)10003-9.
2
Molecular motors: structural adaptations to cellular functions.
Nature. 1997 Oct 9;389(6651):561-7. doi: 10.1038/39247.
4
Reversal in the direction of movement of a molecular motor.
Nature. 1997 Sep 4;389(6646):93-6. doi: 10.1038/38022.
5
Stability and dynamics of G-actin: back-door water diffusion and behavior of a subdomain 3/4 loop.
Biophys J. 1997 Aug;73(2):624-39. doi: 10.1016/S0006-3495(97)78098-6.
7
Microtubule interaction site of the kinesin motor.
Cell. 1997 Jul 25;90(2):207-16. doi: 10.1016/s0092-8674(00)80329-3.
8
Hydrophilicity of cavities in proteins.
Proteins. 1996 Apr;24(4):433-8. doi: 10.1002/(SICI)1097-0134(199604)24:4<433::AID-PROT3>3.0.CO;2-F.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验