Suppr超能文献

基于蓝藻菌视紫红质的光控腺苷酸环化酶(cPACs),可广泛调节细胞内 cAMP 水平。

Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells.

机构信息

From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616.

the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and.

出版信息

J Biol Chem. 2018 Jun 1;293(22):8473-8483. doi: 10.1074/jbc.RA118.002258. Epub 2018 Apr 9.

Abstract

Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium sp. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibits a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for the design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells, tissues, and whole organisms with light across the visible spectrum and into the near IR.

摘要

III 类腺苷酸环化酶常以环境或细胞信号为响应,将 ATP 转化为普遍存在的第二信使 cAMP。在进化过程中,可溶性腺苷酸环化酶的催化结构域不断与信号输入结构域并置,使 cAMP 的合成受到各种环境和内源性信号的控制。依赖于光作为能量来源的光合生物中,光感应结构域的腺苷酸环化酶大量增殖,但也广泛存在于非光合生物中。在这些天然存在的光传感器中,几种基于黄素的光激活腺苷酸环化酶(PAC)已被用作光遗传学工具,以蓝光操纵细胞过程。在本报告中,我们报道了一种来自蓝藻 sp. 的基于细菌视紫红质的光控可激活的腺苷酸环化酶(cPAC)的发现。与依赖黄素的 PAC 不同,后者必须热衰减才能失活,cPAC 表现出双稳态光循环,其腺苷酸环化酶可以分别通过蓝光和绿光可逆激活和失活。通过结构域交换实验,我们还证明了将 cPAC 的波长感应特异性扩展到近红外的能力。总之,我们的工作揭示了一种基于细菌视紫红质的腺苷酸环化酶,它具有很大的潜力,可以设计双稳态光控可激活的腺苷酸环化酶,以精细调节细胞、组织和整个生物体中受 cAMP 调节的过程,使用可见光和近红外光。

相似文献

6
Molecular mechanism of photoactivation of a light-regulated adenylate cyclase.光调控的腺苷酸环化酶的光激活的分子机制。
Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8562-8567. doi: 10.1073/pnas.1704391114. Epub 2017 Jul 24.

引用本文的文献

1
Light quality, oxygenic photosynthesis and more.光质、氧光合作用等等。
Photosynthetica. 2022 Jan 6;60(1):25-28. doi: 10.32615/ps.2021.055. eCollection 2022.
3
Cyanobacteriochromes: A Rainbow of Photoreceptors.蓝藻菌视紫红质:光受体的彩虹。
Annu Rev Microbiol. 2024 Nov;78(1):61-81. doi: 10.1146/annurev-micro-041522-094613. Epub 2024 Nov 7.
6
Controlling cellular activities with light.用光控制细胞活动。
Nat Methods. 2023 Mar;20(3):357-358. doi: 10.1038/s41592-022-01745-3.
9
Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives.细菌中的光调节基因表达:基础、进展与展望
Front Bioeng Biotechnol. 2022 Oct 14;10:1029403. doi: 10.3389/fbioe.2022.1029403. eCollection 2022.

本文引用的文献

2
Engineering an E. coli Near-Infrared Light Sensor.构建一种大肠杆菌近红外光传感器。
ACS Synth Biol. 2018 Jan 19;7(1):240-248. doi: 10.1021/acssynbio.7b00289. Epub 2017 Nov 9.
5
Molecular mechanism of photoactivation of a light-regulated adenylate cyclase.光调控的腺苷酸环化酶的光激活的分子机制。
Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8562-8567. doi: 10.1073/pnas.1704391114. Epub 2017 Jul 24.
7
10
Light regulation of pigment and photosystem biosynthesis in cyanobacteria.蓝藻中色素和光系统生物合成的光调节
Curr Opin Plant Biol. 2017 Jun;37:24-33. doi: 10.1016/j.pbi.2017.03.006. Epub 2017 Apr 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验