Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York.
Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York
J Pharmacol Exp Ther. 2018 Jun;365(3):734-751. doi: 10.1124/jpet.118.247924. Epub 2018 Apr 9.
The objective of this study is to evaluate the heterogeneity in pharmacodynamic response in four in vitro multiple myeloma cell lines to treatment with bortezomib, and to assess whether such differences are associated with drug-induced intracellular signaling protein dynamics identified via a logic-based network modeling approach. The in vitro pharmacodynamic-efficacy of bortezomib was evaluated through concentration-effect and cell proliferation dynamical studies in U266, RPMI8226, MM.1S, and NCI-H929 myeloma cell lines. A Boolean logic-based network model incorporating intracellular protein signaling pathways relevant to myeloma cell growth, proliferation, and apoptosis was developed based on information available in the literature and used to identify key proteins regulating bortezomib pharmacodynamics. The time-course of network-identified proteins was measured using the MAGPIX protein assay system. Traditional pharmacodynamic modeling endpoints revealed variable responses of the cell lines to bortezomib treatment, classifying cell lines as more sensitive (MM.1S and NCI-H929) and less sensitive (U266 and RPMI8226). Network centrality and model reduction identified key proteins (e.g., phosphorylated nuclear factor-B, phosphorylated protein kinase B, phosphorylated mechanistic target of rapamycin, Bcl-2, phosphorylated c-Jun N-terminal kinase, phosphorylated p53, p21, phosphorylated Bcl-2-associated death promoter, caspase 8, and caspase 9) that govern bortezomib pharmacodynamics. The corresponding relative expression (normalized to 0-hour untreated-control cells) of proteins demonstrated a greater magnitude and earlier onset of stimulation/inhibition in cells more sensitive (MM.1S and NCI-H929) to bortezomib-induced cell death at 20 nM, relative to the less sensitive cells (U266 and RPMI8226). Overall, differences in intracellular signaling appear to be associated with bortezomib pharmacodynamic heterogeneity, and key proteins may be potential biomarkers to evaluate bortezomib responses.
本研究旨在评估四种体外多发性骨髓瘤细胞系对硼替佐米治疗的药效反应异质性,并评估这些差异是否与通过基于逻辑的网络建模方法鉴定的药物诱导细胞内信号蛋白动力学有关。通过浓度-效应和细胞增殖动力学研究,在 U266、RPMI8226、MM.1S 和 NCI-H929 骨髓瘤细胞系中评估了硼替佐米的体外药效-疗效。基于文献中可用的信息,开发了一个包含与骨髓瘤细胞生长、增殖和凋亡相关的细胞内蛋白信号通路的基于布尔逻辑的网络模型,并用于鉴定调节硼替佐米药效学的关键蛋白。使用 MAGPIX 蛋白测定系统测量网络鉴定蛋白的时间过程。传统药效学模型终点揭示了细胞系对硼替佐米治疗的反应存在差异,将细胞系分类为更敏感(MM.1S 和 NCI-H929)和较不敏感(U266 和 RPMI8226)。网络中心性和模型简化确定了关键蛋白(例如,磷酸化核因子-B、磷酸化蛋白激酶 B、磷酸化雷帕霉素的机械靶点、Bcl-2、磷酸化 c-Jun N-末端激酶、磷酸化 p53、p21、磷酸化 Bcl-2 相关死亡促进剂、半胱天冬酶 8 和半胱天冬酶 9),这些蛋白控制硼替佐米的药效学。与较不敏感的细胞(U266 和 RPMI8226)相比,在 20 nM 时,对硼替佐米诱导的细胞死亡更敏感(MM.1S 和 NCI-H929)的细胞中,这些蛋白的相对表达(相对于未处理对照细胞归一化为 0 小时)显示出更大的幅度和更早的刺激/抑制作用。总体而言,细胞内信号的差异似乎与硼替佐米药效学异质性有关,关键蛋白可能是评估硼替佐米反应的潜在生物标志物。