Suppr超能文献

伏立诺他和硼替佐米药效动力学中小蛋白信号网络中的聚类高斯牛顿和 CellNOpt 参数估计。

Cluster Gauss-Newton and CellNOpt Parameter Estimation in a Small Protein Signaling Network of Vorinostat and Bortezomib Pharmacodynamics.

机构信息

Department of Pharmaceutical Sciences, University At Buffalo, State University of New York, 431 Pharmacy Building, Buffalo, NY, 14214, USA.

出版信息

AAPS J. 2021 Oct 7;23(6):110. doi: 10.1208/s12248-021-00640-7.

Abstract

Ordinary differential equation (ODE)-based models of signal transduction pathways often contain parameters that are unidentifiable or unmeasurable by experimental data, and calibrating such models to data remains challenging. Here, two efficient parameter estimation methods, cluster Gauss-Newton (CGN) and CellNOpt (CNO), were applied to fit a signaling network model of U266 multiple myeloma cells to the activity dynamics of key proteins in response to vorinostat and/or bortezomib. A logic-based network model was constructed and transformed to 17 ODEs with 79 parameters estimated within broad ranges of biologically plausible values. The top 10% best-fit parameters by both methods had high uncertainties with CV > 50% for the majority of parameters. The root mean square and prediction errors were comparable without statistically significant differences between the two methods. Despite uncertain parameter estimation, protein dynamics after the sequential combination of bortezomib and vorinostat was predicted with reasonable accuracy and precision. Global sensitivity analyses of partial rank correlation coefficients and Sobol sensitivity demonstrated that apoptosis induction was most sensitive to parameters governing the activity of the proteasome-JNK-caspase-8 axis. Simulations revealed that the greatest magnitude of pharmacodynamic drug interactions between bortezomib and vorinostat occurred at caspase-9, AKT, and Bcl-2. Two sequential combinations were explored in silico, and the outcome matched qualitatively with an empirical evaluation of the pharmacodynamic interaction based on cell viability. Overall, the CGN and CNO algorithms performed similarly for this ODE-based network model calibration, and the calibrated model provided meaningful insights into cellular signaling mechanisms in response to pharmacological perturbations.

摘要

基于常微分方程(ODE)的信号转导途径模型通常包含无法通过实验数据识别或测量的参数,并且校准此类模型仍然具有挑战性。在这里,应用了两种有效的参数估计方法,即聚类高斯-牛顿(CGN)和 CellNOpt(CNO),以拟合 U266 多发性骨髓瘤细胞的信号转导网络模型,以适应泊马度胺和/或硼替佐米对关键蛋白活性动力学的影响。构建了一个基于逻辑的网络模型,并将其转换为 17 个具有 79 个参数的 ODE,这些参数在生物学上合理的广泛范围内进行了估计。这两种方法中排名前 10%的最佳拟合参数的不确定性都很高,大多数参数的 CV 值>50%。尽管参数估计不确定,但仍可以合理准确地预测硼替佐米和泊马度胺序贯组合后的蛋白动力学。偏秩相关系数和 Sobol 灵敏度的全局敏感性分析表明,细胞凋亡诱导对蛋白酶体-JNK-半胱天冬酶-8 轴活性的参数最为敏感。模拟表明,硼替佐米和泊马度胺之间的药效学药物相互作用的最大幅度发生在半胱天冬酶-9、AKT 和 Bcl-2 上。在计算机上探索了两种连续的组合,其结果与基于细胞活力的药效学相互作用的经验评估定性匹配。总体而言,CGN 和 CNO 算法在这个基于 ODE 的网络模型校准中表现相似,校准后的模型为药物干预下细胞信号转导机制提供了有意义的见解。

相似文献

10

本文引用的文献

3
Pharmacodynamic Drug-Drug Interactions.药效学药物-药物相互作用。
Clin Pharmacol Ther. 2019 Jun;105(6):1395-1406. doi: 10.1002/cpt.1434. Epub 2019 Apr 26.
7
Boolean network modeling in systems pharmacology.系统药理学中的布尔网络建模。
J Pharmacokinet Pharmacodyn. 2018 Feb;45(1):159-180. doi: 10.1007/s10928-017-9567-4. Epub 2018 Jan 6.
9
Logic Modeling in Quantitative Systems Pharmacology.定量系统药理学中的逻辑建模
CPT Pharmacometrics Syst Pharmacol. 2017 Aug;6(8):499-511. doi: 10.1002/psp4.12225. Epub 2017 Jul 29.
10
Methodologies for Quantitative Systems Pharmacology (QSP) Models: Design and Estimation.定量系统药理学(QSP)模型的方法:设计与估计
CPT Pharmacometrics Syst Pharmacol. 2017 Aug;6(8):496-498. doi: 10.1002/psp4.12206. Epub 2017 Jul 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验