Suppr超能文献

微流控打印-合成平台用于高效制备和筛选组合肽微阵列。

Microfluidic Print-to-Synthesis Platform for Efficient Preparation and Screening of Combinatorial Peptide Microarrays.

机构信息

Department of Biomedical Engineering , University of California , Davis , California 95765 , United States.

Department of Biochemistry and Molecular Medicine , University of California , Davis , California 95765 , United States.

出版信息

Anal Chem. 2018 May 1;90(9):5833-5840. doi: 10.1021/acs.analchem.8b00371. Epub 2018 Apr 13.

Abstract

In this paper, we introduce a novel microfluidic combinatorial synthesis platform, referred to as Microfluidic Print-to-Synthesis (MPS), for custom high-throughput and automated synthesis of a large number of unique peptides in a microarray format. The MPS method utilizes standard Fmoc chemistry to link amino acids on a polyethylene glycol (PEG)-functionalized microdisc array. The resulting peptide microarrays permit rapid screening for interactions with molecular targets or live cells, with low nonspecific binding. Such combinatorial peptide microarrays can be reliably prepared at a spot size of 200 μm with 1 mm center-to-center distance, dimensions that require only minimal reagent consumption (less than 30 nL per spot per coupling reaction). The MPS platform has a scalable design for extended multiplexibility, allowing for 12 different building blocks and coupling reagents to be dispensed in one microfluidic cartridge in the current format, and could be further scaled up. As proof of concept for the MPS platform, we designed and constructed a focused tetrapeptide library featuring 2560 synthetic peptide sequences, capped at the N-terminus with 4-[( N'-2-methylphenyl)ureido]phenylacetic acid. We then used live human T lymphocyte Jurkat cells as a probe to screen the peptide microarrays for their interaction with α4β1 integrin overexpressed and activated on these cells. Unlike the one-bead-one-compound approach that requires subsequent decoding of positive beads, each spot in the MPS array is spatially addressable. Therefore, this platform is an ideal tool for rapid optimization of lead compounds found in nature or discovered from diverse combinatorial libraries, using either biochemical or cell-based assays.

摘要

在本文中,我们介绍了一种新颖的微流控组合合成平台,称为微流控打印到合成(MPS),用于以微阵列格式定制高通量和自动化合成大量独特的肽。MPS 方法利用标准的 Fmoc 化学将氨基酸连接到聚乙二醇(PEG)功能化的微盘阵列上。所得的肽微阵列允许与分子靶标或活细胞进行快速筛选,具有低非特异性结合。这种组合肽微阵列可以在 200μm 的点大小和 1mm 的中心到中心距离下可靠地制备,所需的试剂消耗非常少(每个偶联反应每个点少于 30nL)。MPS 平台具有可扩展的设计,可实现扩展的多路复用性,在当前格式下,一个微流控盒中可以分配 12 种不同的构建块和偶联试剂,并可以进一步扩展。作为 MPS 平台的概念验证,我们设计并构建了一个聚焦的四肽文库,其中包含 2560 种合成肽序列,在 N 端用 4-[(N'-2-甲基苯基)脲基]苯乙酸封端。然后,我们使用活的人 T 淋巴细胞 Jurkat 细胞作为探针,筛选肽微阵列与这些细胞上过表达和激活的 α4β1 整合素的相互作用。与需要随后解码阳性珠粒的一个珠粒一个化合物的方法不同,MPS 阵列中的每个点都是空间可寻址的。因此,该平台是一种理想的工具,可用于快速优化从自然界中发现或从各种组合文库中发现的先导化合物,使用生化或基于细胞的测定法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e2/11870389/e898559d281a/nihms-2047584-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验