Caldeweyher Eike, Brandenburg Jan Gerit
Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
J Phys Condens Matter. 2018 May 31;30(21):213001. doi: 10.1088/1361-648X/aabcfb. Epub 2018 Apr 10.
Kohn-Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree-Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.
科恩-沈密度泛函理论(DFT)通常用于大型系统的快速电子结构计算,并且在可预见的未来很可能仍将是生成可靠几何结构的首选方法。在此,我们提出了一种简化DFT方法的层次结构,该结构针对大型系统的一致结构和非共价相互作用进行设计,特别关注分子晶体。所涵盖的方法包括一个最小基组哈特里-福克(HF-3c)、一个小基组筛选交换混合泛函(HSE-3c)以及一个在中等大小基组中评估的广义梯度近似泛函(B97-3c),所有这些方法都增加了半经典校正势。我们概述了方法设计,对分子晶体几何结构和晶格能的既定基准集进行了全面评估,并重点介绍了在原胞中含有数百个原子的大型有机晶体上的一些实际应用。