Bursch Markus, Mewes Jan-Michael, Hansen Andreas, Grimme Stefan
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany.
Angew Chem Int Ed Engl. 2022 Oct 17;61(42):e202205735. doi: 10.1002/anie.202205735. Epub 2022 Sep 14.
Nowadays, many chemical investigations are supported by routine calculations of molecular structures, reaction energies, barrier heights, and spectroscopic properties. The lion's share of these quantum-chemical calculations applies density functional theory (DFT) evaluated in atomic-orbital basis sets. This work provides best-practice guidance on the numerous methodological and technical aspects of DFT calculations in three parts: Firstly, we set the stage and introduce a step-by-step decision tree to choose a computational protocol that models the experiment as closely as possible. Secondly, we present a recommendation matrix to guide the choice of functional and basis set depending on the task at hand. A particular focus is on achieving an optimal balance between accuracy, robustness, and efficiency through multi-level approaches. Finally, we discuss selected representative examples to illustrate the recommended protocols and the effect of methodological choices.
如今,许多化学研究都得到了分子结构、反应能量、势垒高度和光谱性质的常规计算的支持。这些量子化学计算中绝大部分采用在原子轨道基组中评估的密度泛函理论(DFT)。这项工作分三个部分就DFT计算的众多方法和技术方面提供了最佳实践指导:首先,我们搭建框架并引入一个逐步决策树,以选择尽可能贴近实验建模的计算方案。其次,我们给出一个推荐矩阵,根据手头的任务指导泛函和基组的选择。特别强调的是通过多级方法在准确性、稳健性和效率之间实现最佳平衡。最后,我们讨论一些选定的代表性例子,以说明推荐的方案以及方法选择的影响。