Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea.
Nanoscale. 2018 May 17;10(19):8953-8961. doi: 10.1039/c7nr09626g.
A mesoporous nanoplate network of two-dimensional (2D) layered nickel hydroxide Ni(OH)2 intercalated with polyoxovanadate anions (Ni(OH)2-POV) was built using a chemical solution deposition method. This approach will provide high flexibility for controlling the chemical composition and the pore structure of the resulting Ni(OH)2-POV nanohybrids. The layer-by-layer ordered growth of the Ni(OH)2-POV is demonstrated by powder X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The random growth of the intercalated Ni(OH)2-POV nanohybrids leads to the formation of an interconnected network morphology with a highly porous stacking structure whose porosity is controlled by changing the ratio of Ni(OH)2 and POV. The lateral size and thickness of the Ni(OH)2-POV nanoplates are ∼400 nm and from ∼5 nm to 7 nm, respectively. The obtained thin films are highly active electrochemical capacitor electrodes with a maximum specific capacity of 1440 F g-1 at a current density of 1 A g-1, and they withstand up to 2000 cycles with a capacity retention of 85%. The superior electrochemical performance of the Ni(OH)2-POV nanohybrids is attributed to the expanded mesoporous surface area and the intercalation of the POV anions. The experimental findings highlight the outstanding electrochemical functionality of the 2D Ni(OH)2-POV nanoplate network that will provide a facile route for the synthesis of low-dimensional hybrid nanomaterials for a highly active supercapacitor electrode.
采用化学溶液沉积法构建了二维(2D)层状镍氢氧化物 Ni(OH)2 插层多钒酸盐阴离子(Ni(OH)2-POV)的介孔纳米板网络。这种方法将为控制所得 Ni(OH)2-POV 纳米杂化物的化学成分和孔结构提供高度的灵活性。粉末 X 射线衍射和横截面高分辨率透射电子显微镜证明了 Ni(OH)2-POV 的逐层有序生长。插层 Ni(OH)2-POV 纳米杂化物的随机生长导致形成具有高度多孔堆叠结构的互连网络形态,其孔隙率可以通过改变 Ni(OH)2 和 POV 的比例来控制。Ni(OH)2-POV 纳米板的横向尺寸和厚度分别约为 400nm 和 5nm 至 7nm。所获得的薄膜是高活性电化学电容器电极,在 1A g-1 的电流密度下具有 1440F g-1 的最大比容量,并且在 2000 次循环后容量保持率为 85%。Ni(OH)2-POV 纳米杂化物的优异电化学性能归因于扩展的介孔表面积和 POV 阴离子的插层。实验结果突出了 2D Ni(OH)2-POV 纳米板网络的卓越电化学功能,为用于高活性超级电容器电极的低维杂化纳米材料的合成提供了简便途径。