Amate Rutuja U, Bhosale Mrunal K, Morankar Pritam J, Teli Aviraj M, Jeon Chan-Wook
School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 712-749, Republic of Korea.
Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
Polymers (Basel). 2025 Jun 28;17(13):1802. doi: 10.3390/polym17131802.
Designing advanced electrode architectures with tailored morphology and redox synergy is essential for achieving high-performance supercapacitive energy storage. In this study, a PVP-assisted hydrothermal approach was employed to synthesize binder-free NiCoO nanostructured electrodes directly on nickel foam substrates. By modulating the PVP concentration (0.5-2 wt%), hierarchical flower-like nanosheets were engineered, with the NiCo-P sample (1 wt% PVP) exhibiting an optimized structure, superior electroactive surface area, and enhanced ion accessibility. Comprehensive electrochemical analysis revealed that NiCo-P delivered an outstanding areal capacitance of 36.5 F/cm at 10 mA/cm, along with excellent cycling stability over 15,000 cycles with 80.97% retention. Kinetic studies confirmed dominant diffusion-controlled redox behavior with high OH diffusion coefficients and minimal polarization. An asymmetric pouch-type supercapacitor device (NiCo-P//AC) exhibited a wide operating window of 1.5 V, achieving a remarkable areal capacitance of 187 mF/cm, energy density of 0.058 mWh/cm, and capacitive retention of 78.78% after 5000 cycles. The superior performance is attributed to the synergistic integration of mixed-valence Ni and Co species, engineered nanosheet morphology, and low interfacial resistance. This work underscores the significance of surfactant-directed design in advancing cost-effective, high-performance electrodes for next-generation flexible energy storage technologies.
设计具有定制形态和氧化还原协同作用的先进电极结构对于实现高性能超级电容储能至关重要。在本研究中,采用聚乙烯吡咯烷酮(PVP)辅助水热法直接在泡沫镍基底上合成无粘结剂的NiCoO纳米结构电极。通过调节PVP浓度(0.5 - 2 wt%),构建了分级花状纳米片,其中NiCo - P样品(1 wt% PVP)呈现出优化的结构、优异的电活性表面积和增强的离子可及性。全面的电化学分析表明,NiCo - P在10 mA/cm²时具有36.5 F/cm²的出色面积电容,在超过15000次循环中具有优异的循环稳定性,电容保持率为80.97%。动力学研究证实了主导的扩散控制氧化还原行为,具有高的OH⁻扩散系数和最小的极化。一种非对称软包型超级电容器器件(NiCo - P//AC)展现出1.5 V的宽工作窗口,在5000次循环后实现了187 mF/cm²的显著面积电容、0.058 mWh/cm²的能量密度和78.78%的电容保持率。优异的性能归因于混合价态的Ni和Co物种的协同整合、设计的纳米片形态以及低界面电阻。这项工作强调了表面活性剂导向设计在推进用于下一代柔性储能技术的经济高效、高性能电极方面的重要性。