ACS Nano. 2018 May 22;12(5):4218-4223. doi: 10.1021/acsnano.7b07474. Epub 2018 Apr 17.
Opioid neuropeptides play a significant role in pain perception, appetite regulation, sleep, memory, and learning. Advances in understanding of opioid peptide physiology are held back by the lack of methodologies for real-time quantification of affinities and kinetics of the opioid neuropeptide-receptor interaction at levels typical of endogenous secretion (<50 pM) in biosolutions with physiological ionic strength. To address this challenge, we developed all-electronic opioid-neuropeptide biosensors based on graphene microelectrodes functionalized with a computationally redesigned water-soluble μ-opioid receptor. We used the functionalized microelectrode in a bias-free charge measurement configuration to measure the binding kinetics and equilibrium binding properties of the engineered receptor with [d-Ala, N-MePhe, Gly-ol]-enkephalin and β-endorphin at picomolar levels in real time.
阿片神经肽在疼痛感知、食欲调节、睡眠、记忆和学习中发挥着重要作用。由于缺乏实时定量分析生物溶液中内源性分泌水平(<50 pM)下阿片神经肽-受体相互作用亲和力和动力学的方法学,对阿片肽生理学的理解进展受到了阻碍,该生物溶液的离子强度与生理条件相当。为了解决这一挑战,我们基于功能化的石墨烯微电极开发了全电子阿片神经肽生物传感器,该微电极经计算重新设计后具有水溶性μ-阿片受体。我们在无偏压电荷测量配置中使用功能化微电极实时测量工程化受体与 [d-Ala, N-MePhe, Gly-ol]-脑啡肽和β-内啡肽在皮摩尔水平的结合动力学和平衡结合特性。