Suppr超能文献

利用电子病历数据中的临床医生文本记录来验证与跨性别相关的诊断代码。

Using clinician text notes in electronic medical record data to validate transgender-related diagnosis codes.

机构信息

Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.

Division of General Internal Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.

出版信息

J Am Med Inform Assoc. 2018 Jul 1;25(7):905-908. doi: 10.1093/jamia/ocy022.

Abstract

OBJECTIVE

Transgender individuals are vulnerable to negative health risks and outcomes, but research remains limited because data sources, such as electronic medical records (EMRs), lack standardized collection of gender identity information. Most EMR do not include the gold standard of self-identified gender identity, but International Classification of Diseases (ICDs) includes diagnostic codes indicating transgender-related clinical services. However, it is unclear if these codes can indicate transgender status. The objective of this study was to determine the extent to which patients' clinician notes in EMR contained transgender-related terms that could corroborate ICD-coded transgender identity.

METHODS

Data are from the US Department of Veterans Affairs Corporate Data Warehouse. Transgender patients were defined by the presence of ICD9 and ICD10 codes associated with transgender-related clinical services, and a 3:1 comparison group of nontransgender patients was drawn. Patients' clinician text notes were extracted and searched for transgender-related words and phrases.

RESULTS

Among 7560 patients defined as transgender based on ICD codes, the search algorithm identified 6753 (89.3%) with transgender-related terms. Among 22 072 patients defined as nontransgender without ICD codes, 246 (1.1%) had transgender-related terms; after review, 11 patients were identified as transgender, suggesting a 0.05% false negative rate.

CONCLUSIONS

Using ICD-defined transgender status can facilitate health services research when self-identified gender identity data are not available in EMR.

摘要

目的

跨性别者易受到负面健康风险和结果的影响,但由于缺乏标准化的性别认同信息收集,研究仍然有限,例如电子病历(EMR)。大多数 EMR 都不包括自我认同性别认同的黄金标准,但《国际疾病分类》(ICD)包含指示与跨性别相关的临床服务的诊断代码。然而,尚不清楚这些代码是否可以指示跨性别身份。本研究的目的是确定 EMR 中患者的临床医生记录中包含多少可以证实 ICD 编码的跨性别认同的与跨性别相关的术语。

方法

数据来自美国退伍军人事务部公司数据仓库。通过存在与跨性别相关的临床服务相关的 ICD9 和 ICD10 代码来定义跨性别患者,并且抽取了 3:1 的非跨性别患者对照。提取患者的临床医生文本记录并搜索与跨性别相关的单词和短语。

结果

在根据 ICD 代码定义的 7560 名跨性别患者中,搜索算法确定了 6753 名(89.3%)具有跨性别相关术语。在没有 ICD 代码的 22072 名非跨性别患者中,有 246 名(1.1%)具有跨性别相关术语;经审查,有 11 名患者被确定为跨性别者,提示假阴性率为 0.05%。

结论

当 EMR 中无法获得自我认同的性别认同数据时,使用 ICD 定义的跨性别状态可以促进健康服务研究。

相似文献

引用本文的文献

6
Mental Health Utilization Among Transgender Veterans.跨性别退伍军人的心理健康服务利用情况
JAMA Netw Open. 2025 Jan 2;8(1):e2454694. doi: 10.1001/jamanetworkopen.2024.54694.

本文引用的文献

1
Identifying the Transgender Population in the Medicare Program.确定医疗保险计划中的跨性别群体。
Transgend Health. 2016 Dec 1;1(1):250-265. doi: 10.1089/trgh.2016.0031. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验