Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan.
JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, Japan.
Plant Cell Physiol. 2018 Aug 1;59(8):1568-1580. doi: 10.1093/pcp/pcy061.
Regulation of stomatal aperture is essential for plant growth and survival in response to environmental stimuli. Opening of stomata induces uptake of CO2 for photosynthesis and transpiration, which enhances uptake of nutrients from roots. Light is the most important stimulus for stomatal opening. Under drought stress, the plant hormone ABA induces stomatal closure to prevent water loss. However, the molecular mechanisms of stomatal movements are not fully understood. In this study, we screened chemical libraries to identify compounds that affect stomatal movements in Commelina benghalensis and characterize the underlying molecular mechanisms. We identified nine stomatal closing compounds (SCL1-SCL9) that suppress light-induced stomatal opening by >50%, and two compounds (temsirolimus and CP-100356) that induce stomatal opening in the dark. Further investigations revealed that SCL1 and SCL2 had no effect on autophosphorylation of phototropin or the activity of the inward-rectifying plasma membrane (PM) K+ channel, KAT1, but suppressed blue light-induced phosphorylation of the penultimate residue, threonine, in PM H+-ATPase, which is a key enzyme for stomatal opening. SCL1 and SCL2 had no effect on ABA-dependent responses, including seed germination and expression of ABA-induced genes. These results suggest that SCL1 and SCL2 suppress light-induced stomatal opening at least in part by inhibiting blue light-induced activation of PM H+-ATPase, but not by the ABA signaling pathway. Interestingly, spraying leaves onto dicot and monocot plants with SCL1 suppressed wilting of leaves, indicating that inhibition of stomatal opening by these compounds confers tolerance to drought stress in plants.
气孔开度的调节对于植物生长和生存至关重要,以响应环境刺激。气孔的开放诱导 CO2 的吸收用于光合作用和蒸腾作用,从而增强了从根部吸收养分。光是刺激气孔开放的最重要因素。在干旱胁迫下,植物激素 ABA 诱导气孔关闭以防止水分流失。然而,气孔运动的分子机制尚不完全清楚。在这项研究中,我们筛选了化学文库,以鉴定影响 Commelina benghalensis 气孔运动的化合物,并表征其潜在的分子机制。我们确定了 9 种气孔关闭化合物(SCL1-SCL9),它们抑制光诱导的气孔开放超过 50%,并且两种化合物(temsirolimus 和 CP-100356)在黑暗中诱导气孔开放。进一步的研究表明,SCL1 和 SCL2 对光敏色素的自磷酸化或内向整流质膜(PM)K+通道 KAT1 的活性没有影响,但抑制了 PM H+-ATPase 中倒数第二位残基苏氨酸的蓝光诱导磷酸化,PM H+-ATPase 是气孔开放的关键酶。SCL1 和 SCL2 对依赖 ABA 的反应没有影响,包括种子萌发和 ABA 诱导基因的表达。这些结果表明,SCL1 和 SCL2 至少部分通过抑制蓝光诱导的 PM H+-ATPase 的激活来抑制光诱导的气孔开放,而不是通过 ABA 信号通路。有趣的是,将 SCL1 喷洒在双子叶和单子叶植物的叶片上可抑制叶片萎蔫,表明这些化合物抑制气孔开放可赋予植物对干旱胁迫的耐受性。