School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
Nat Commun. 2018 Apr 10;9(1):1355. doi: 10.1038/s41467-018-03734-7.
The laser-matter interaction and solidification phenomena associated with laser additive manufacturing (LAM) remain unclear, slowing its process development and optimisation. Here, through in situ and operando high-speed synchrotron X-ray imaging, we reveal the underlying physical phenomena during the deposition of the first and second layer melt tracks. We show that the laser-induced gas/vapour jet promotes the formation of melt tracks and denuded zones via spattering (at a velocity of 1 m s). We also uncover mechanisms of pore migration by Marangoni-driven flow (recirculating at a velocity of 0.4 m s), pore dissolution and dispersion by laser re-melting. We develop a mechanism map for predicting the evolution of melt features, changes in melt track morphology from a continuous hemi-cylindrical track to disconnected beads with decreasing linear energy density and improved molten pool wetting with increasing laser power. Our results clarify aspects of the physics behind LAM, which are critical for its development.
激光与物质的相互作用以及与激光增材制造(LAM)相关的凝固现象仍不清楚,这减缓了其工艺开发和优化的速度。在这里,我们通过原位和实时高速同步加速器 X 射线成像,揭示了第一层和第二层熔覆轨迹沉积过程中的基础物理现象。我们表明,激光诱导的气体/蒸汽射流通过飞溅(速度为 1 m/s)促进熔覆轨迹和无氧化层区的形成。我们还揭示了由 Marangoni 流驱动的孔迁移(速度为 0.4 m/s)、激光重熔引起的孔隙溶解和分散的机制。我们开发了一种预测熔池特征演变的机制图,该图说明了熔覆轨迹形貌从连续的半圆柱状轨迹到不连续的珠状轨迹的变化,这与线性能量密度的降低以及激光功率增加时熔池润湿性的改善有关。我们的研究结果澄清了 LAM 背后的物理方面,这对于其发展至关重要。