Zhang Kai, Chen Yunhui, Marussi Sebastian, Fan Xianqiang, Fitzpatrick Maureen, Bhagavath Shishira, Majkut Marta, Lukic Bratislav, Jakata Kudakwashe, Rack Alexander, Jones Martyn A, Shinjo Junji, Panwisawas Chinnapat, Leung Chu Lun Alex, Lee Peter D
Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK.
Research Complex at Harwell, Harwell Campus, Didcot, OX11 0FA, UK.
Nat Commun. 2024 Feb 24;15(1):1715. doi: 10.1038/s41467-024-45913-9.
Porosity in directed energy deposition (DED) deteriorates mechanical performances of components, limiting safety-critical applications. However, how pores arise and evolve in DED remains unclear. Here, we reveal pore evolution mechanisms during DED using in situ X-ray imaging and multi-physics modelling. We quantify five mechanisms contributing to pore formation, migration, pushing, growth, removal and entrapment: (i) bubbles from gas atomised powder enter the melt pool, and then migrate circularly or laterally; (ii) small bubbles can escape from the pool surface, or coalesce into larger bubbles, or be entrapped by solidification fronts; (iii) larger coalesced bubbles can remain in the pool for long periods, pushed by the solid/liquid interface; (iv) Marangoni surface shear flow overcomes buoyancy, keeping larger bubbles from popping out; and (v) once large bubbles reach critical sizes they escape from the pool surface or are trapped in DED tracks. These mechanisms can guide the development of pore minimisation strategies.
定向能量沉积(DED)中的孔隙率会降低部件的机械性能,限制了对安全至关重要的应用。然而,DED过程中孔隙如何产生和演变仍不清楚。在此,我们使用原位X射线成像和多物理场建模揭示了DED过程中的孔隙演变机制。我们量化了导致孔隙形成、迁移、推动、生长、去除和截留的五种机制:(i)气体雾化粉末产生的气泡进入熔池,然后循环或横向迁移;(ii)小气泡可以从熔池表面逸出,或聚合并成更大的气泡,或被凝固前沿截留;(iii)较大的聚并气泡可以在熔池中长时间停留,被固/液界面推动;(iv)马兰戈尼表面剪切流克服浮力,防止较大气泡弹出;(v)一旦大气泡达到临界尺寸,它们就会从熔池表面逸出或被困在DED轨迹中。这些机制可以指导孔隙最小化策略的发展。