Suppr超能文献

自动酶免疫分析仪微量加样检测技术研究。

A Study on Micropipetting Detection Technology of Automatic Enzyme Immunoassay Analyzer.

机构信息

Tianjin Key Laboratory of Modern Mechatronics Equipment Technology, Tianjin Polytechnic University, Tianjin, 300387, China.

Zhongshan Institute, University of Electronic Science and Technology of China, Guangdong, 528400, China.

出版信息

Sci Rep. 2018 Apr 10;8(1):5757. doi: 10.1038/s41598-018-24145-0.

Abstract

In order to improve the accuracy and reliability of micropipetting, a method of micro-pipette detection and calibration combining the dynamic pressure monitoring in pipetting process and quantitative identification of pipette volume in image processing was proposed. Firstly, the normalized pressure model for the pipetting process was established with the kinematic model of the pipetting operation, and the pressure model is corrected by the experimental method. Through the pipetting process pressure and pressure of the first derivative of real-time monitoring, the use of segmentation of the double threshold method as pipetting fault evaluation criteria, and the pressure sensor data are processed by Kalman filtering, the accuracy of fault diagnosis is improved. When there is a fault, the pipette tip image is collected through the camera, extract the boundary of the liquid region by the background contrast method, and obtain the liquid volume in the tip according to the geometric characteristics of the pipette tip. The pipette deviation feedback to the automatic pipetting module and deviation correction is carried out. The titration test results show that the combination of the segmented pipetting kinematic model of the double threshold method of pressure monitoring, can effectively real-time judgment and classification of the pipette fault. The method of closed-loop adjustment of pipetting volume can effectively improve the accuracy and reliability of the pipetting system.

摘要

为了提高微量移液器的准确性和可靠性,提出了一种结合微移液器检测和校准的方法,该方法结合了在移液器过程中的动态压力监测和图像处理中的移液器体积定量识别。首先,通过移液器操作的运动学模型建立了移液器过程的归一化压力模型,并通过实验方法对压力模型进行了修正。通过实时监测移液器过程压力和压力的一阶导数,使用双阈值分割方法作为移液器故障评估标准,对压力传感器数据进行卡尔曼滤波处理,提高了故障诊断的准确性。当发生故障时,通过摄像头采集移液器尖端的图像,通过背景对比方法提取液体区域的边界,并根据移液器尖端的几何特征获得尖端中的液体体积。将移液器偏差反馈给自动移液器模块并进行偏差校正。滴定试验结果表明,分段移液器运动学模型与压力监测的双阈值方法相结合,能够有效地实时判断和分类移液器故障。采用闭环调整移液器体积的方法,可有效提高移液器系统的准确性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f123/5893622/e46cca5c1a41/41598_2018_24145_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验