Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905.
Protein Sci. 2018 Jul;27(7):1304-1313. doi: 10.1002/pro.3421. Epub 2018 May 25.
Prion diseases are infectious neurodegenerative diseases that are capable of cross-species transmission, thus arousing public health concerns. Seed-templating propagation of prion protein is believed to underlie prion cross-species transmission pathology. Understanding the molecular fundamentals of prion propagation is key to unravelling the pathology of prion diseases. In this study, we use coarse-grained molecular dynamics to investigate the seeding and cross-seeding aggregation of three prion protein fragments PrP(120-144) originating from human (Hu), bank vole (BV), and Syrian hamster (SHa). We find that the seed accelerates the aggregation of the monomer peptides by eliminating the lag phase. The monomer aggregation kinetics are mainly determined by the structure of the seed. The stronger the hydrophobic residues on the seed associate with each other, the higher the probability that the seed recruits monomer peptides to its surface/interface. For cross-seeding aggregation, we show that Hu has a strong tendency to adopt the conformation of the BV seed and vice versa; the Hu and BV monomers have a weak tendency to adopt the conformation of the SHa seed. These two findings are consistent with Apostol et al.'s experimental findings on PrP(138-143) and partially consistent with Jones et al.'s finding on PrP(23-144). We also identify several conformational mismatches when SHa cross-seeds BV and Hu peptides, indicating the existence of a cross-seeding barrier between SHa and the other two sequences. This study sheds light on the molecular mechanism of seed-templating aggregation of prion protein fragments underlying the sequence-dependent transmission barrier in prion diseases.
朊病毒病是一种传染性神经退行性疾病,能够在物种间传播,因此引起了公众健康的关注。朊病毒蛋白的种子模板传播被认为是朊病毒跨物种传播病理学的基础。了解朊病毒传播的分子基础是揭示朊病毒病病理学的关键。在这项研究中,我们使用粗粒分子动力学研究了三种朊病毒蛋白片段 PrP(120-144)的种子和交叉种子聚集,这些片段分别来自人类(Hu)、田鼠(BV)和叙利亚仓鼠(SHa)。我们发现,种子通过消除滞后相来加速单体肽的聚集。单体聚合动力学主要取决于种子的结构。种子上相互结合的疏水性残基越强,种子招募单体肽到其表面/界面的概率就越高。对于交叉种子聚集,我们表明 Hu 有强烈的倾向采用 BV 种子的构象,反之亦然;Hu 和 BV 单体有较弱的倾向采用 SHa 种子的构象。这两个发现与 Apostol 等人在 PrP(138-143)上的实验结果一致,部分与 Jones 等人在 PrP(23-144)上的发现一致。当 SHa 交叉种子 BV 和 Hu 肽时,我们还发现了几个构象不匹配,表明 SHa 和其他两个序列之间存在交叉种子屏障。这项研究揭示了朊病毒蛋白片段的种子模板聚集的分子机制,这是朊病毒病中序列依赖性传播屏障的基础。