Suppr超能文献

面向闭式二阶自然场景统计模型。

Towards a Closed Form Second-Order Natural Scene Statistics Model.

出版信息

IEEE Trans Image Process. 2018 Jul;27(7):3194-3209. doi: 10.1109/TIP.2018.2817740.

Abstract

Previous work on natural scene statistics (NSS)-based image models has focused primarily on characterizing the univariate bandpass statistics of single pixels. These models have proven to be powerful tools driving a variety of computer vision and image/video processing applications, including depth estimation, image quality assessment, and image denoising, among others. Multivariate NSS models descriptive of the joint distributions of spatially separated bandpass image samples have, however, received relatively little attention. Here, we develop a closed form bivariate spatial correlation model of bandpass and normalized image samples that completes an existing 2D joint generalized Gaussian distribution model of adjacent bandpass pixels. Our model is built using a set of diverse, high-quality naturalistic photographs, and as a control, we study the model properties on white noise. We also study the way the model fits are affected when the images are modified by common distortions.

摘要

先前基于自然场景统计(NSS)的图像模型研究主要集中在描述单像素的单变量带通统计特性上。这些模型已被证明是驱动各种计算机视觉和图像/视频处理应用的强大工具,包括深度估计、图像质量评估和图像去噪等。然而,描述空间分离带通图像样本联合分布的多元 NSS 模型却受到了相对较少的关注。在这里,我们开发了一种带通和归一化图像样本的闭形式双变量空间相关模型,该模型补充了现有的相邻带通像素的二维联合广义高斯分布模型。我们的模型是使用一组多样化的高质量自然照片构建的,作为对照,我们还研究了该模型在白噪声上的特性。我们还研究了在对图像进行常见失真处理时,模型拟合的方式会受到怎样的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验