Suppr超能文献

基于成像传感器的散焦模糊检测与估计

Defocus Blur Detection and Estimation from Imaging Sensors.

作者信息

Li Jinyang, Liu Zhijing, Yao Yong

机构信息

School of Computer Science and Technology, Xidian University, Xi'an 710071, Shannxi, China.

出版信息

Sensors (Basel). 2018 Apr 8;18(4):1135. doi: 10.3390/s18041135.

Abstract

Sparse representation has been proven to be a very effective technique for various image restoration applications. In this paper, an improved sparse representation based method is proposed to detect and estimate defocus blur of imaging sensors. Considering the fact that the patterns usually vary remarkably across different images or different patches in a single image, it is unstable and time-consuming for sparse representation over an over-complete dictionary. We propose an adaptive domain selection scheme to prelearn a set of compact dictionaries and adaptively select the optimal dictionary to each image patch. Then, with nonlocal structure similarity, the proposed method learns nonzero-mean coefficients' distributions that are much more closer to the real ones. More accurate sparse coefficients can be obtained and further improve the performance of results. Experimental results validate that the proposed method outperforms existing defocus blur estimation approaches, both qualitatively and quantitatively.

摘要

稀疏表示已被证明是一种在各种图像恢复应用中非常有效的技术。本文提出了一种基于改进稀疏表示的方法来检测和估计成像传感器的散焦模糊。考虑到模式通常在不同图像或单个图像的不同块之间有显著变化,在过完备字典上进行稀疏表示是不稳定且耗时的。我们提出了一种自适应域选择方案,以预学习一组紧凑字典,并为每个图像块自适应地选择最优字典。然后,利用非局部结构相似性,该方法学习更接近真实分布的非零均值系数分布。可以获得更准确的稀疏系数,并进一步提高结果的性能。实验结果验证了该方法在定性和定量方面均优于现有的散焦模糊估计方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba53/5949045/4a8bb8e8b903/sensors-18-01135-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验