Suppr超能文献

在临床诊断尿路感染中使用自动化尿液显微镜分析:在学术医疗中心人群中定义最佳诊断评分。

Use of Automated Urine Microscopy Analysis in Clinical Diagnosis of Urinary Tract Infection: Defining an Optimal Diagnostic Score in an Academic Medical Center Population.

机构信息

Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.

Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

J Clin Microbiol. 2018 May 25;56(6). doi: 10.1128/JCM.02030-17. Print 2018 Jun.

Abstract

A retrospective case record study was conducted that established a scoring tool based on clinical and iQ200 parameters, able to predict or rule out the clinical diagnosis of UTI in the majority of adult patients in an academic hospital. Automated standardized quantitative urine analysis, such as iQ200 analysis, is on the rise because of its high accuracy and efficiency compared to those of traditional urine analysis. Previous research on automated urinalysis focused mainly on predicting culture results but not on the clinical diagnosis of urinary tract infection (UTI). A retrospective analysis was conducted of consecutive urine samples sent in for culture because of suspected UTI. UTI was defined by expert opinion, based on reported symptoms, conventional urine sediment analysis, and urine cultures. Parameters of iQ200 analysis and clinical symptoms and signs were compared between cases and controls. Optimal cutoff values were determined for iQ200 parameters, and multivariate logistic regression analysis was used to identify the set of variables that best predicts the clinical diagnosis of UTI for development of a scoring tool. A total of 382 patients were included. Optimal cutoff values of iQ200 analysis were 74 white blood cells (WBC)/μl, 6,250 "all small particles" (ASP)/μl, and a bacterial score of 2 on an ordinal scale of 0 to 5. The scoring tool attributed 1 point for frequent micturition or increased urge, 2 points for dysuria, 1 point for a bacterial score of ≥2, 2 points for WBC/μl of ≥50, and an additional point for WBC/μl of ≥150. This score had a sensitivity of 86% and a specificity of 92% when using a threshold of <4 points. The combination of iQ200 analysis and a simple survey could predict or rule out UTIs in a majority of patients in an academic medical center.

摘要

一项回顾性病例记录研究建立了一个基于临床和 iQ200 参数的评分工具,该工具能够预测或排除大多数在学术医院就诊的成年患者的尿路感染的临床诊断。与传统尿液分析相比,自动标准化定量尿液分析(如 iQ200 分析)具有更高的准确性和效率,因此越来越受欢迎。以前的自动化尿液分析研究主要集中在预测培养结果上,而不是尿路感染(UTI)的临床诊断上。对因疑似 UTI 而送检的连续尿液样本进行了回顾性分析。UTI 的定义由专家根据报告的症状、常规尿液沉淀物分析和尿液培养结果进行判断。比较了 iQ200 分析参数与临床症状和体征之间的关系。确定了 iQ200 参数的最佳截断值,并使用多变量逻辑回归分析确定了最佳预测尿路感染临床诊断的一组变量,以开发评分工具。共纳入 382 例患者。iQ200 分析的最佳截断值分别为 74 个白细胞(WBC)/μl、6,250 个“所有小颗粒”(ASP)/μl 和 0 至 5 级序数量表上的细菌评分 2。评分工具将以下情况各计 1 分:尿频或尿急增加、尿痛、细菌评分≥2、WBC/μl≥50、WBC/μl≥150 时再加 1 分。当阈值<4 分时,该评分的灵敏度为 86%,特异性为 92%。iQ200 分析与简单调查相结合,可以预测或排除大多数学术医疗中心患者的 UTI。

相似文献

2
Can routine automated urinalysis reduce culture requests?常规自动化尿液分析能否减少培养物的需求?
Clin Biochem. 2013 Sep;46(13-14):1285-9. doi: 10.1016/j.clinbiochem.2013.06.015. Epub 2013 Jun 25.
6
Interlaboratory Collaboration for Optimized Screening for Urinary Tract Infection.实验室间协作优化尿路感染筛查
J Clin Microbiol. 2016 Jan;54(1):93-8. doi: 10.1128/JCM.01943-15. Epub 2015 Oct 21.
7

引用本文的文献

2
Exploring the association between the degree of pyuria and urinary tract infections.探索脓尿程度与尿路感染之间的关联。
Microbiol Spectr. 2025 Apr;13(4):e0201524. doi: 10.1128/spectrum.02015-24. Epub 2025 Mar 5.

本文引用的文献

3
Interlaboratory Collaboration for Optimized Screening for Urinary Tract Infection.实验室间协作优化尿路感染筛查
J Clin Microbiol. 2016 Jan;54(1):93-8. doi: 10.1128/JCM.01943-15. Epub 2015 Oct 21.
9
IRIS iQ200 workstation as a screen for performing urine culture.将 IRIS iQ200 工作站用作进行尿液培养的屏幕。
Diagn Microbiol Infect Dis. 2013 Jan;75(1):5-8. doi: 10.1016/j.diagmicrobio.2012.08.026. Epub 2012 Oct 24.
10
Clinical practice. Uncomplicated urinary tract infection.临床实践。单纯性尿路感染。
N Engl J Med. 2012 Mar 15;366(11):1028-37. doi: 10.1056/NEJMcp1104429.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验